IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-177101.html
   My bibliography  Save this paper

Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures

Author

Listed:
  • Christophe Ley
  • Thomas Verdebout

Abstract

No abstract is available for this item.

Suggested Citation

  • Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/177101
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/177101/1/2014-46-LEY_VERDEBOUT-skew.pdf
    File Function: 2014-46-LEY_VERDEBOUT-skew
    Download Restriction: no

    References listed on IDEAS

    as
    1. Christophe Ley & Thomas Verdebout, 2014. "Local Powers of Optimal One-sample and Multi-sample Tests for the Concentration of Fisher-von Mises-Langevin Distributions," International Statistical Review, International Statistical Institute, vol. 82(3), pages 440-456, December.
    2. Hallin, M. & Werker, B.J.M., 2003. "Semiparametric efficiency, distribution-freeness and invariance," Other publications TiSEM fe20db00-786a-4261-9999-6, Tilburg University, School of Economics and Management.
    3. A. Kume & Andrew T. A. Wood, 2005. "Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants," Biometrika, Biometrika Trust, vol. 92(2), pages 465-476, June.
    4. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    5. Davy Paindaveine & Thomas Verdebout, 2013. "Optimal Rank-Based Tests for the Location Parameter of a Rotationally Symmetric Distribution on the Hypersphere," Working Papers ECARES ECARES 2013-36, ULB -- Universite Libre de Bruxelles.
    6. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.
    7. repec:eca:wpaper:2013/128686 is not listed on IDEAS
    8. Kato, Shogo & Jones, M. C., 2010. "A Family of Distributions on the Circle With Links to, and Applications Arising From, Möbius Transformation," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 249-262.
    9. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    10. Umbach, Dale & Jammalamadaka, S. Rao, 2009. "Building asymmetry into circular distributions," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 659-663, March.
    11. Boulerice, Bernard & Ducharme, Gilles R., 1997. "Smooth Tests of Goodness-of-Fit for Directional and Axial Data," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 154-175, January.
    12. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    13. Arthur Pewsey, 2004. "Testing for Circular Reflective Symmetry about a Known Median Axis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(5), pages 575-585.
    14. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jupp, P.E. & Regoli, G. & Azzalini, A., 2016. "A general setting for symmetric distributions and their relationship to general distributions," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 107-119.

    More about this item

    Keywords

    directional statistics; flexible modelling; generating mechanism; rotationally Symmetric Distribution; tests for rotational symmetry;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/177101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: http://edirc.repec.org/data/arulbbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.