IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/957.html
   My bibliography  Save this paper

Estimation of Multinomial Models Using Weak Monotonicity Assumptions

Author

Abstract

This paper introduces a semiparametric method of estimating multinomial models that imposes extremely weak monotonicity assumptions about a function of observable characteristics. Previous methods have imposed stronger, typically parametric, conditions on this function. The only assumptions made in this paper about the function of characteristics are its monotonicity, upper-semicontinuity, and uniform boundedness. The method is applicable, among others, to polychotomous choice models. The estimation method is shown to be strongly consistent. A technique to calculate the estimator is provided.

Suggested Citation

  • Rosa L. Matzkin, 1990. "Estimation of Multinomial Models Using Weak Monotonicity Assumptions," Cowles Foundation Discussion Papers 957, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:957
    as

    Download full text from publisher

    File URL: http://cowles.yale.edu/sites/default/files/files/pub/d09/d0957.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    2. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    3. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    4. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    5. Arabmazar, Abbas & Schmidt, Peter, 1982. "An Investigation of the Robustness of the Tobit Estimator to Non-Normality," Econometrica, Econometric Society, vol. 50(4), pages 1055-1063, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa L. Matzkin, 1988. "Nonparametric and Distribution-Free Estimation of the Binary Choice and the Threshold-Crossing Models," Cowles Foundation Discussion Papers 889, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:957. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: http://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.