IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1825.html
   My bibliography  Save this paper

On Bartlett Correctability of Empirical Likelihood in Generalized Power Divergence Family

Author

Listed:

Abstract

Baggerly (1998) showed that empirical likelihood is the only member in the Cressie-Read power divergence family to be Bartlett correctable. This paper strengthens Baggerly's result by showing that in a generalized class of the power divergence family, which includes the Cressie-Read family and other nonparametric likelihood such as Schennach's (2005, 2007) exponentially tilted empirical likelihood, empirical likelihood is still the only member to be Bartlett correctable.

Suggested Citation

  • Lorenzo Camponovo & Taisuke Otsu, 2011. "On Bartlett Correctability of Empirical Likelihood in Generalized Power Divergence Family," Cowles Foundation Discussion Papers 1825, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1825
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d18/d1825.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ma, Yanyuan & Ronchetti, Elvezio, 2011. "Saddlepoint Test in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 147-156.
    2. Chen, S. X., 1994. "Empirical Likelihood Confidence Intervals for Linear Regression Coefficients," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 24-40, April.
    3. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    4. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matsushita, Yukitoshi & Otsu, Taisuke, 2020. "Likelihood inference on semiparametric models with generated regressors," LSE Research Online Documents on Economics 102696, London School of Economics and Political Science, LSE Library.
    2. Kun Chen & Ngai Hang Chan & Chun Yip Yau, 2016. "Bartlett Correction of Empirical Likelihood for Non-Gaussian Short-Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 624-649, September.
    3. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2017. "Empirical likelihood ratio in penalty form and the convex hull problem," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 507-529, November.
    4. Nicola Lunardon & Gianfranco Adimari, 2016. "Second-order Accurate Confidence Regions Based on Members of the Generalized Power Divergence Family," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 213-227, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Florens & Anna Simoni, 2015. "Gaussian processes and Bayesian moment estimation," Working Papers 2015-09, Center for Research in Economics and Statistics.
    2. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    3. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    4. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    5. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
    6. Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
    7. Sanjay Chaudhuri & Malay Ghosh, 2011. "Empirical likelihood for small area estimation," Biometrika, Biometrika Trust, vol. 98(2), pages 473-480.
    8. Gubhinder Kundhi & Paul Rilstone, 2015. "Saddlepoint expansions for GEL estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 1-24, March.
    9. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    10. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    11. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    12. Samer A. Kharroubi, 2018. "Posterior simulation via the exponentially tilted signed root log-likelihood ratio," Computational Statistics, Springer, vol. 33(1), pages 213-234, March.
    13. Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2015. "Nonparametric likelihood for volatility under high frequency data," STICERD - Econometrics Paper Series /2015/581, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    14. Tang, Niansheng & Yan, Xiaodong & Zhao, Puying, 2018. "Exponentially tilted likelihood inference on growing dimensional unconditional moment models," Journal of Econometrics, Elsevier, vol. 202(1), pages 57-74.
    15. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    16. Bruce N. Lehmann, 2005. "The Role of Beliefs in Inference for Rational Expectations Models," NBER Working Papers 11758, National Bureau of Economic Research, Inc.
    17. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.
    18. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    19. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    20. Francesco Bravo, "undated". "Empirical likelihood specification testing in linear regression models," Discussion Papers 00/28, Department of Economics, University of York.

    More about this item

    Keywords

    Bartlett correction; Empirical likelihood; Cressie-Read power divergence family;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1825. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.