IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws130102.html
   My bibliography  Save this paper

Bayesian inference and data cloning in population projection matrices

Author

Listed:
  • Rodríguez Bernal, M. T.
  • Marín Díazaraque, Juan Miguel
  • Horra Navarro, J. de la

Abstract

Discrete time models are used in Ecology for describing the evolution of an agestructured population. Usually, they are considered from a deterministic viewpoint but, in practice, this is not very realistic. The statistical model we propose in this article is a reasonable model for the case in which the evolution of the population is described by means of a projection matrix. In this statistical model, fertility rates and survival rates are unknown parameters and they are estimated by using a Bayesian approach. Usual Bayesian and data cloning methods (based on Bayesian methodology) are applied to real data from the population of the Steller sea lions located in the Alaska coast since 1978 to 2004. The estimates obtained from these methods show a good behavior when they are compared to the actual values

Suggested Citation

  • Rodríguez Bernal, M. T. & Marín Díazaraque, Juan Miguel & Horra Navarro, J. de la, 2013. "Bayesian inference and data cloning in population projection matrices," DES - Working Papers. Statistics and Econometrics. WS ws130102, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws130102
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/16113/ws130102.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lele, Subhash R. & Nadeem, Khurram & Schmuland, Byron, 2010. "Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1617-1625.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Bayesian MCMC algorithm;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws130102. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.