IDEAS home Printed from https://ideas.repec.org/p/cte/wbrepe/wb110302.html
   My bibliography  Save this paper

Good deals in markets with frictions

Author

Listed:
  • Balbás, Beatriz
  • Balbás, Raquel

Abstract

This paper studies a portfolio choice problem such that the pricing rule may incorporate transaction costs and the risk measure is coherent and expectation bounded. We will prove the necessity of dealing with pricing rules such that there are essentially bounded stochastic discount factors, which must be also bounded from below by a strictly positive value. Otherwise good deals will be available to traders, i.e., depending on the selected risk measure, investors can build portfolios whose (risk, return) will be as close as desired to (- infinite, + infinite) or (0, infinite). This pathologic property still holds for vector risk measures (i.e., if we minimize a vector valued function whose components are risk measures). It is worthwhile to point out that essentially bounded stochastic discount factors are not usual in financial literature. In particular, the most famous frictionless, complete and arbitrage free pricing models imply the existence of good deals for every coherent and expectation bounded measure of risk, and the incorporation of transaction costs will no guarantee the solution of this caveat

Suggested Citation

  • Balbás, Beatriz & Balbás, Raquel, 2011. "Good deals in markets with frictions," DEE - Working Papers. Business Economics. WB wb110302, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
  • Handle: RePEc:cte:wbrepe:wb110302
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/0cc83034-6e23-4df2-a37c-5f4849c414b5/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, M., 2007. "Equilibrium with investors using a diversity of deviation measures," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3251-3268, November.
    2. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    2. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2010. "CAPM and APT-like models with risk measures," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1166-1174, June.
    3. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    4. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    5. Claus, Matthias, 2022. "Existence of solutions for a class of bilevel stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 299(2), pages 542-549.
    6. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    7. Francesca Biagini & Alessandro Doldi & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2023. "Collective Arbitrage and the Value of Cooperation," Papers 2306.11599, arXiv.org, revised May 2024.
    8. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
    9. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    10. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    11. Yanhong Chen & Zachary Feinstein, 2022. "Set-valued dynamic risk measures for processes and for vectors," Finance and Stochastics, Springer, vol. 26(3), pages 505-533, July.
    12. Herzberg, Frederik, 2014. "Aggregation of Monotonic Bernoullian Archimedean preferences: Arrovian impossibility results," Center for Mathematical Economics Working Papers 488, Center for Mathematical Economics, Bielefeld University.
    13. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    14. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    15. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    16. c{C}au{g}{i}n Ararat & Birgit Rudloff, 2016. "Dual representations for systemic risk measures," Papers 1607.03430, arXiv.org, revised Jul 2019.
    17. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    18. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    19. Carlo Acerbi & Giacomo Scandolo, 2008. "Liquidity risk theory and coherent measures of risk," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 681-692.
    20. Tim Leung & Yoshihiro Shirai, 2015. "Optimal derivative liquidation timing under path-dependent risk penalties," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-32.

    More about this item

    Keywords

    Risk measure;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wbrepe:wb110302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.business.uc3m.es/es/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.