IDEAS home Printed from https://ideas.repec.org/p/cpb/discus/277.html
   My bibliography  Save this paper

Safe Dike Heights at Minimal Costs: An Integer Programming Approach

Author

Listed:
  • Peter Zwaneveld

    (CPB Netherlands Bureau for Economic Policy Analysis)

  • Gerard Verweij

Abstract

Optimal dike heights are of crucial importance to the Netherlands as almost 60% of its surface is under threat of flooding from sea, lakes, or rivers. This area is protected by more than 3,500 kilometres of dunes and dikes. These dunes and dikes require substantial yearly investments of more than 1 billion euro. In this paper we propose an integer programming model for a cost-benefit analysis to determine optimal dike heights. We improve upon the model proposed by Brekelmans et al. (2012), which is in turn an improvement of the model by Van Dantzig (1956). The model by Van Dantzig (1956) was introduced after a devastating flood in the Netherlands in 1953. Our model provides an alternative approach with almost complete flexibility towards input-parameters for flood probabilities, damage costs and investment costs for dike heightening. In contrast to Brekelmans et al. (2012), who present a dedicated approach with no optimality guarantee, we present an easy-to-implement algorithm that provides an optimal solution to the problem. We briefly discuss robust optimization approaches to deal with uncertainty, e.g. climate change. The method has been implemented and tested for the most recent data on flood probabilities, damage and investment costs, which are presently being used by the government to determine how the safety standards in the Dutch Water Act should be changed.

Suggested Citation

  • Peter Zwaneveld & Gerard Verweij, 2014. "Safe Dike Heights at Minimal Costs: An Integer Programming Approach," CPB Discussion Paper 277, CPB Netherlands Bureau for Economic Policy Analysis.
  • Handle: RePEc:cpb:discus:277
    as

    Download full text from publisher

    File URL: https://www.cpb.nl/sites/default/files/publicaties/download/cpb-discussion-paper-277-safe-dike-heights-minimal-costs-integer-programming-approach.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruud Brekelmans & Dick den Hertog & Kees Roos & Carel Eijgenraam, 2012. "Safe Dike Heights at Minimal Costs: The Nonhomogeneous Case," Operations Research, INFORMS, vol. 60(6), pages 1342-1355, December.
    2. Carel Eijgenraam & Jarl Kind & Carlijn Bak & Ruud Brekelmans & Dick den Hertog & Matthijs Duits & Kees Roos & Pieter Vermeer & Wim Kuijken, 2014. "Economically Efficient Standards to Protect the Netherlands Against Flooding," Interfaces, INFORMS, vol. 44(1), pages 7-21, February.
    3. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    4. Chahim, M. & Brekelmans, R.C.M. & den Hertog, D. & Kort, P.M., 2012. "An Impulse Control Approach to Dike Height Optimization (Revised version of CentER DP 2011-097)," Other publications TiSEM 3c3300f1-03c8-45b2-9fb6-4, Tilburg University, School of Economics and Management.
    5. Oecd, 2007. "Use of Discount Rates in the Estimation of the Costs of Inaction with Respect to Selected Environmental Concerns," OECD Papers, OECD Publishing, vol. 7(9), pages 1-42.
    6. Carel Eijgenraam, 2006. "Optimal safety standards for dike-ring areas," CPB Discussion Paper 62, CPB Netherlands Bureau for Economic Policy Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dupuits, E.J.C. & Schweckendiek, T. & Kok, M., 2017. "Economic optimization of coastal flood defense systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 143-152.
    2. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    4. Johanna Grames & Dieter Grass & Peter M. Kort & Alexia Prskawetz, 2019. "Optimal investment and location decisions of a firm in a flood risk area using impulse control theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1051-1077, December.
    5. Dupuits, E.J.C. & Klerk, W.J. & Schweckendiek, T. & de Bruijn, K.M., 2019. "Impact of including interdependencies between multiple riverine flood defences on the economically optimal flood safety levels," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Aida Abiad & Sander Gribling & Domenico Lahaye & Matthias Mnich & Guus Regts & Lluis Vena & Gerard Verweij & Peter Zwaneveld, 2018. "On the complexity of solving a decision problem with flow-depending costs: the case of the IJsselmeer dikes," Papers 1804.09752, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Zwaneveld & Gerard Verweij, 2014. "Safe Dike Heights at Minimal Costs: An Integer Programming Approach," CPB Discussion Paper 277.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Grames, Johanna & Prskawetz, Alexia & Grass, Dieter & Viglione, Alberto & Blöschl, Günter, 2016. "Modeling the interaction between flooding events and economic growth," Ecological Economics, Elsevier, vol. 129(C), pages 193-209.
    4. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Zwaneveld, P. & Verweij, G. & van Hoesel, S., 2018. "Safe dike heights at minimal costs: An integer programming approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 294-301.
    6. Bos, Frits & Zwaneveld, Peter, 2017. "Cost-benefit analysis for flood risk management and water governance in the Netherlands; an overview of one century," MPRA Paper 80933, University Library of Munich, Germany.
    7. Carel Eijgenraam & Ruud Brekelmans & Dick den Hertog & Kees Roos, 2017. "Optimal Strategies for Flood Prevention," Management Science, INFORMS, vol. 63(5), pages 1644-1656, May.
    8. Postek, Krzysztof & den Hertog, Dick & Kind, J. & Pustjens, Chris, 2016. "Adjustable Robust Strategies for Flood Protection," Discussion Paper 2016-038, Tilburg University, Center for Economic Research.
    9. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    10. Chahim, M. & Brekelmans, R.C.M. & den Hertog, D. & Kort, P.M., 2012. "An Impulse Control Approach to Dike Height Optimization (Revised version of CentER DP 2011-097)," Discussion Paper 2012-079, Tilburg University, Center for Economic Research.
    11. Perry C. Oddo & Ben S. Lee & Gregory G. Garner & Vivek Srikrishnan & Patrick M. Reed & Chris E. Forest & Klaus Keller, 2020. "Deep Uncertainties in Sea‐Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 153-168, January.
    12. Alessio Ciullo & Jan H. Kwakkel & Karin M. De Bruijn & Neelke Doorn & Frans Klijn, 2020. "Efficient or Fair? Operationalizing Ethical Principles in Flood Risk Management: A Case Study on the Dutch‐German Rhine," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1844-1862, September.
    13. Postek, Krzysztof & den Hertog, Dick & Kind, Jarl & Pustjens, Chris, 2019. "Adjustable robust strategies for flood protection," Omega, Elsevier, vol. 82(C), pages 142-154.
    14. Postek, Krzysztof & den Hertog, Dick & Kind, J. & Pustjens, Chris, 2016. "Adjustable Robust Strategies for Flood Protection," Other publications TiSEM 6e85c2ff-32dd-4c7e-8d95-a, Tilburg University, School of Economics and Management.
    15. Klerk, Wouter Jan & Kanning, Wim & Kok, Matthijs & Wolfert, Rogier, 2021. "Optimal planning of flood defence system reinforcements using a greedy search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    16. Dupuits, E.J.C. & Schweckendiek, T. & Kok, M., 2017. "Economic optimization of coastal flood defense systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 143-152.
    17. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    18. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    19. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpb:discus:277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cpbgvnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.