IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/1210.html
   My bibliography  Save this paper

Repeated games, duality and the central limit theorem

Author

Listed:
  • DE MEYER, B.

Abstract

No abstract is available for this item.

Suggested Citation

  • De Meyer, B., 1996. "Repeated games, duality and the central limit theorem," LIDAM Reprints CORE 1210, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:1210
    DOI: 10.1287/moor.21.1.237
    Note: In : Mathematics of Operations Research, 21 (1), 237-251, 1996
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabien Gensbittel, 2019. "Continuous-Time Markov Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 671-699, September.
    2. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    3. Fabien Gensbittel, 2015. "Extensions of the Cav( u ) Theorem for Repeated Games with Incomplete Information on One Side," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 80-104, February.
    4. VIEILLE, Nicolas & ROSENBERG, Dinah & SOLAN, Eilon, 2002. "Stochastic games with a single controller and incomplete information," HEC Research Papers Series 754, HEC Paris.
    5. Bernard De Meyer & Alexandre Marino, 2005. "Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides," Cahiers de la Maison des Sciences Economiques b05027, Université Panthéon-Sorbonne (Paris 1).
    6. R. Buckdahn & P. Cardaliaguet & M. Quincampoix, 2011. "Some Recent Aspects of Differential Game Theory," Dynamic Games and Applications, Springer, vol. 1(1), pages 74-114, March.
    7. Fabien Gensbittel & Christine Grün, 2019. "Zero-Sum Stopping Games with Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 277-302, February.
    8. Xiaochi Wu, 2022. "Existence of value for a differential game with asymmetric information and signal revealing," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 213-247, March.
    9. Rainer Buckdahn & Marc Quincampoix & Catherine Rainer & Yuhong Xu, 2016. "Differential games with asymmetric information and without Isaacs’ condition," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 795-816, November.
    10. Fabien Gensbittel & Miquel Oliu-Barton, 2020. "Optimal Strategies in Zero-Sum Repeated Games with Incomplete Information: The Dependent Case," Dynamic Games and Applications, Springer, vol. 10(4), pages 819-835, December.
    11. P. Cardaliaguet, 2008. "Representations Formulas for Some Differential Games with Asymmetric Information," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 1-16, July.
    12. Chen, Fang & Guo, Xianping, 2023. "Two-person zero-sum risk-sensitive stochastic games with incomplete reward information on one side," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 218-245.
    13. Fedor Sandomirskiy, 2018. "On Repeated Zero-Sum Games with Incomplete Information and Asymptotically Bounded Values," Dynamic Games and Applications, Springer, vol. 8(1), pages 180-198, March.
    14. Xiaochi Wu, 2019. "Infinite Horizon Differential Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 858-880, September.
    15. Bernard De Meyer & Ehud Lehrer & Dinah Rosenberg, 2010. "Evaluating Information in Zero-Sum Games with Incomplete Information on Both Sides," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 851-863, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:1210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.