IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf418.html
   My bibliography  Save this paper

Hedging and Pricing Illiquid Options with Market Impacts (Forthcoming in International Journal of Financial Engineering)

Author

Listed:
  • Taiga Saito

    (Graduate School of Economics, University of Tokyo)

Abstract

In this paper, we consider hedging and pricing of illiquid options on an untradable underlying asset, where an alternative asset is used as a hedging instrument. Particularly, we consider the situation where the trade price of the hedging instrument is subject to market impacts caused by the hedger and the liquidity costs paid as a spread from the mid price. Pricing illiquid options, which often appears in trading of structured products, is a critical issue in practice because of its difficulties in hedging mainly due to untradablity of the underlying asset as well as the liquidity costs and market impacts of the hedging instrument. Firstly, by setting the problem under a discrete time model, where the optimal hedging strategy is defined by the local risk-minimization, we present algorithms to obtain the option price along with the hedging strategy by an asymptotic expansion. Moreover, we provide numerical examples. This model enables the estimation of the effect of both the market impacts and the liquidity costs on option prices, which is important in practice.

Suggested Citation

  • Taiga Saito, 2017. "Hedging and Pricing Illiquid Options with Market Impacts (Forthcoming in International Journal of Financial Engineering)," CARF F-Series CARF-F-418, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf418
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/F418.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burton Hollifield & Robert A. Miller & Patrik Sandås, 2004. "Empirical Analysis of Limit Order Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(4), pages 1027-1063.
    2. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    3. Curatola, Giuliano, 2022. "Price impact, strategic interaction and portfolio choice," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    4. Yadh Hafsi & Edoardo Vittori, 2024. "Optimal Execution with Reinforcement Learning," Papers 2411.06389, arXiv.org.
    5. Peter Bank & Ibrahim Ekren & Johannes Muhle-Karbe, 2018. "Liquidity in Competitive Dealer Markets," Papers 1807.08278, arXiv.org, revised Mar 2021.
    6. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    7. Hong, Harrison & Rady, Sven, 2002. "Strategic trading and learning about liquidity," Journal of Financial Markets, Elsevier, vol. 5(4), pages 419-450, October.
    8. Steffen Bohn, 2011. "The slippage paradox," Papers 1103.2214, arXiv.org.
    9. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    10. Gniadkowska-Szymańska Agata, 2017. "The impact of trading liquidity on the rate of return on emerging markets: the example of Poland and the Baltic countries," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 13(4), pages 136-148, December.
    11. Soohan Kim & Jimyeong Kim & Hong Kee Sul & Youngjoon Hong, 2023. "An Adaptive Dual-level Reinforcement Learning Approach for Optimal Trade Execution," Papers 2307.10649, arXiv.org.
    12. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 610-625.
    13. Bartram, Söhnke & Branke, Jürgen & Motahari, Mehrshad, 2020. "Artificial Intelligence in Asset Management," CEPR Discussion Papers 14525, C.E.P.R. Discussion Papers.
    14. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    15. Claudio Bellani & Damiano Brigo, 2021. "Mechanics of good trade execution in the framework of linear temporary market impact," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 143-163, January.
    16. Schoeneborn, Torsten & Schied, Alexander, 2007. "Liquidation in the Face of Adversity: Stealth Vs. Sunshine Trading, Predatory Trading Vs. Liquidity Provision," MPRA Paper 5548, University Library of Munich, Germany.
    17. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    19. Yinhong Dong & Donglei Du & Qiaoming Han & Jianfeng Ren & Dachuan Xu, 2024. "A Stackelberg order execution game," Annals of Operations Research, Springer, vol. 336(1), pages 571-604, May.
    20. Samuel N. Cohen & Lukasz Szpruch, 2011. "A limit order book model for latency arbitrage," Papers 1110.4811, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.