IDEAS home Printed from https://ideas.repec.org/p/cep/cepdps/dp1211.html

Estimating Bayesian Decision Problems with Heterogeneous Priors

Author

Listed:
  • Stephen Hansen
  • Michael McMahon

Abstract

In many areas of economics there is a growing interest in how expertise and preferences drive individual and group decision making under uncertainty. Increasingly, we wish to estimate such models to quantify which of these drive decision making. In this paper we propose a new channel through which we can empirically identify expertise and preference parameters by using variation in decisions over heterogeneous priors. Relative to existing estimation approaches, our "Prior-Based Identification" extends the possible environments which can be estimated, and also substantially improves the accuracy and precision of estimates in those environments which can be estimated using existing methods.

Suggested Citation

  • Stephen Hansen & Michael McMahon, 2013. "Estimating Bayesian Decision Problems with Heterogeneous Priors," CEP Discussion Papers dp1211, Centre for Economic Performance, LSE.
  • Handle: RePEc:cep:cepdps:dp1211
    as

    Download full text from publisher

    File URL: https://cep.lse.ac.uk/pubs/download/dp1211.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Hansen & Michael McMahon, 2016. "First Impressions Matter: Signalling as a Source of Policy Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1645-1672.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:cepdps:dp1211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://cep.lse.ac.uk/_new/publications/discussion-papers/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.