IDEAS home Printed from
   My bibliography  Save this paper

Analytic Derivatives for Estimation of Linear Dynamic Models


  • Peter A. Zadrozny


This paper develops two algorithms. Algorithm I computes the exact, Gaussian, log-likelihood function, its exact, gradient vector, and an asymptotic approximation of its Hessian matrix, for discrete-time, linear, dynamic models in state-space form. Algorithm 2, derived from algorithm I, computes the exact, sample, information matrix of this likelihood function. The computed quantities are analytic (not numerical approximations) and should, therefore, be useful for reliably, quickly, and accurately: (i) checking local identifiability of parameters by checking the rank of the information matrix; (ii) using the gradient vector and Hessian matrix to compute maximum likelihood estimates of parameters with Newton methods; and, (iii) computing asymptotic covariances (Cramer-Rao bounds) of the parameter estimates with the Hessian or the information matrix. The principal contribution of the paper is algorithm 2, which extends to multivariate models the univariate results of Porat and Friedlander (1986). By relying on the Kalman filter instead of the Levinson-Durbin filter used by Porat and Friedlander, algorithms 1 and 2 can automatically handle any pattern of missing or linearly aggregated data. Although algorithm 1 is well known, it is treated in detail in order to make the paper self contained.

Suggested Citation

  • Peter A. Zadrozny, 1988. "Analytic Derivatives for Estimation of Linear Dynamic Models," Working Papers 88-5, Center for Economic Studies, U.S. Census Bureau.
  • Handle: RePEc:cen:wpaper:88-5

    Download full text from publisher

    File URL:
    Download Restriction: no


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:88-5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Erica Coates). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.