IDEAS home Printed from https://ideas.repec.org/p/cem/doctra/259.html
   My bibliography  Save this paper

Patrones de Fluctuación de la curva de rendimientos en Argentina

Author

Listed:
  • Miguel Delfiner

Abstract

Con datos históricos previos al default correspondientes a bonos colocados en el mercado local (Letes y Bontes) y en el internacional (bonos Globales), se emplea la técnica de componentes principales para analizar los desplazamientos de la curva de rendimientos en el mercado de bonos. Se concluye que en la mayoría de los casos aproximadamente un 75% del movimiento de la curva queda explicado por desplazamientos paralelos, un 10% adicional por cambios de pendiente, siendo por construcción estos movimientos independientes entre sí. También se estudia la aplicabilidad de las técnicas desarrolladas en este documento a las diversas series de LEBAC en $ existentes actualmente en el mercado.

Suggested Citation

  • Miguel Delfiner, 2004. "Patrones de Fluctuación de la curva de rendimientos en Argentina," CEMA Working Papers: Serie Documentos de Trabajo. 259, Universidad del CEMA.
  • Handle: RePEc:cem:doctra:259
    as

    Download full text from publisher

    File URL: https://www.ucema.edu.ar/publicaciones/download/documentos/259.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lekkos, Ilias, 2001. "Factor models and the correlation structure of interest rates: Some evidence for USD, GBP, DEM and JPY," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1427-1445, August.
    2. Knez, Peter J & Litterman, Robert & Scheinkman, Jose Alexandre, 1994. "Explorations into Factors Explaining Money Market Returns," Journal of Finance, American Finance Association, vol. 49(5), pages 1861-1882, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe PÉRIGNON & Christophe VILLA, 2002. "Permanent and Transitory Factors Affecting the Dynamics of the Term Structure of Interest Rates," FAME Research Paper Series rp53, International Center for Financial Asset Management and Engineering.
    2. Galluccio, Stefano & Roncoroni, Andrea, 2006. "A new measure of cross-sectional risk and its empirical implications for portfolio risk management," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2387-2408, August.
    3. Laruent Barras, 2005. "International Conditional Asset Allocation under Real Time Uncertrainty," FAME Research Paper Series rp153, International Center for Financial Asset Management and Engineering.
    4. Emrah Ahi & Vedat Akgiray & Emrah Sener, 2018. "Robust term structure estimation in developed and emerging markets," Annals of Operations Research, Springer, vol. 260(1), pages 23-49, January.
    5. İshak Demi̇r & Burak A. Eroğlu & Seçi̇l Yildirim‐Karaman, 2022. "Heterogeneous Effects of Unconventional Monetary Policy on the Bond Yields across the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1425-1457, August.
    6. Geert Bekaert & Seonghoon Cho & Antonio Moreno, 2010. "New Keynesian Macroeconomics and the Term Structure," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 33-62, February.
    7. Andr? Kurmann & Christopher Otrok, 2013. "News Shocks and the Slope of the Term Structure of Interest Rates," American Economic Review, American Economic Association, vol. 103(6), pages 2612-2632, October.
    8. Takamizawa, Hideyuki & Shoji, Isao, 2009. "Modeling the term structure of interest rates with general diffusion processes: A moment approximation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 65-77, January.
    9. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    10. Carstensen, Kai, 2003. "Nonstationary term premia and cointegration of the term structure," Economics Letters, Elsevier, vol. 80(3), pages 409-413, September.
    11. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    12. Brooks, Robert, 1996. "Computing yields on enhanced CDs," Financial Services Review, Elsevier, vol. 5(1), pages 31-42.
    13. Cláudia Simões & Luís Oliveira & Jorge M. Bravo, 2021. "Immunization Strategies for Funding Multiple Inflation-Linked Retirement Income Benefits," Risks, MDPI, vol. 9(4), pages 1-28, March.
    14. Devin Reilly & Pierre-Daniel G. Sarte, 2010. "Changes in monetary policy and the variation in interest rate changes across credit markets," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 96(2Q), pages 201-229.
    15. Hans Dewachter & Marco Lyrio & Konstantijn Maes, 2006. "A joint model for the term structure of interest rates and the macroeconomy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 439-462, May.
    16. Wu, Tao, 2006. "Macro Factors and the Affine Term Structure of Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(7), pages 1847-1875, October.
    17. Dewachter, Hans & Lyrio, Marco, 2006. "Macro Factors and the Term Structure of Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(1), pages 119-140, February.
    18. Fan, Longzhen & Johansson, Anders C., 2009. "What Moves Bond Yields In China?," Working Paper Series 2009-9, Stockholm School of Economics, China Economic Research Center.
    19. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    20. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cem:doctra:259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucila Solla (email available below). General contact details of provider: https://edirc.repec.org/data/cemaaar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.