IDEAS home Printed from https://ideas.repec.org/p/bls/wpaper/471.html

Adjusting Body Mass for Measurement Error with Invalid Validation Data

Author

Listed:
  • Charles Courtemanche
  • Joshua C. Pinkston
  • Jay Stewart

Abstract

We propose a new method for using validation data to correct self-reported weight and height in surveys that do not weigh and measure respondents. The standard correction from prior research regresses actual measures on reported values using an external validation dataset, and then uses the estimated coefficients to predict actual measures in the primary dataset. This approach requires the strong assumption that the expectations of actual weight and height conditional on the reported values are the same in both datasets. In contrast, we use percentile ranks rather than levels of reported weight and height. Our approach requires the much weaker assumption that the conditional expectations of actual measures are increasing in reported values in both samples, making our correction more robust to differences in measurement error across surveys. We then examine three nationally representative datasets and confirm that misreporting is sensitive to differences in survey context such as data collection mode. When we compare predicted BMI distributions using the two approaches, we find that the standard correction is biased by differences in misreporting while our correction is not. Finally, we present several examples that demonstrate the potential importance of our correction for future econometric analyses and estimates of obesity rates.

Suggested Citation

  • Charles Courtemanche & Joshua C. Pinkston & Jay Stewart, 2014. "Adjusting Body Mass for Measurement Error with Invalid Validation Data," Economic Working Papers 471, Bureau of Labor Statistics.
  • Handle: RePEc:bls:wpaper:471
    as

    Download full text from publisher

    File URL: https://www.bls.gov/osmr/research-papers/2014/pdf/ec140020.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • I1 - Health, Education, and Welfare - - Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bls:wpaper:471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jennifer Cassidy-Gilbert (email available below). General contact details of provider: https://edirc.repec.org/data/blsgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.