IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/719.html
   My bibliography  Save this paper

Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework

Author

Listed:
  • Li, Hanwu

    (Center for Mathematical Economics, Bielefeld University)

  • Wang, Falei

    (Center for Mathematical Economics, Bielefeld University)

Abstract

In this paper we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton-Jacobi-Bellman-Isaac equation.

Suggested Citation

  • Li, Hanwu & Wang, Falei, 2025. "Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework," Center for Mathematical Economics Working Papers 719, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:719
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/3005045/3005046
    File Function: First Version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    2. Ariel Neufeld & Mario Sikic, 2016. "Robust Utility Maximization in Discrete-Time Markets with Friction," Papers 1610.09230, arXiv.org, revised May 2018.
    3. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    4. Li, Hanwu & Peng, Shige & Soumana Hima, Abdoulaye, 2018. "Reflected Solutions of BSDEs Driven by $\textit{G}$-Brownian Motion," Center for Mathematical Economics Working Papers 590, Center for Mathematical Economics, Bielefeld University.
    5. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    6. Ariel Neufeld & Marcel Nutz, 2018. "Robust Utility Maximization With Lã‰Vy Processes," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 82-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanwu Li & Falei Wang, 2019. "Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 422-439, November.
    2. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    3. Hafida Bouanani & Omar Kebiri & Carsten Hartmann & Amel Redjil, 2024. "Optimal Relaxed Control for a Decoupled G-FBSDE," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1027-1059, September.
    4. Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
    5. Bingjun Wang & Hongjun Gao & Mingxia Yuan & Qingkun Xiao, 2024. "Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion Under Monotonicity Condition," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1902-1926, June.
    6. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    7. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    8. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    9. Li, Hanwu & Song, Yongsheng, 2025. "Backward Stochastic Differential Equations Driven by $\textit{G}$-Brownian Motion with Double Reflections," Center for Mathematical Economics Working Papers 717, Center for Mathematical Economics, Bielefeld University.
    10. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    11. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
    12. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.
    13. Guohui Guan & Zongxia Liang & Yilun Song, 2022. "The continuous-time pre-commitment KMM problem in incomplete markets," Papers 2210.13833, arXiv.org, revised Feb 2023.
    14. David Criens & Lars Niemann, 2022. "Robust utility maximization with nonlinear continuous semimartingales," Papers 2206.14015, arXiv.org, revised Aug 2023.
    15. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    16. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    17. Huyên Pham & Xiaoli Wei & Chao Zhou, 2022. "Portfolio diversification and model uncertainty: A robust dynamic mean‐variance approach," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 349-404, January.
    18. Hanwu Li & Yongsheng Song, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2285-2314, December.
    19. Hu, Mingshang & Wang, Falei & Zheng, Guoqiang, 2016. "Quasi-continuous random variables and processes under the G-expectation framework," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2367-2387.
    20. Blessing, Jonas & Kupper, Michael & Sgarabottolo, Alessandro, 2025. "Discrete approximation of risk-based prices under volatility uncertainty," Center for Mathematical Economics Working Papers 742, Center for Mathematical Economics, Bielefeld University.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.