IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/636.html
   My bibliography  Save this paper

Optimal Dividend Payout under Stochastic Discounting

Author

Listed:
  • Bandini, Elena

    (Center for Mathematical Economics, Bielefeld University)

  • de Angelis, Tiziano

    (Center for Mathematical Economics, Bielefeld University)

  • Ferrari, Giorgio

    (Center for Mathematical Economics, Bielefeld University)

  • Gozzi, Fausto

    (Center for Mathematical Economics, Bielefeld University)

Abstract

Adopting a probabilistic approach we determine the optimal dividend payout policy of a firm whose surplus process follows a controlled arithmetic Brownian motion and whose cash-flows are discounted at a stochastic dynamic rate. Dividends can be paid to shareholders at unrestricted rates so that the problem is cast as one of singular stochastic control. The stochastic interest rate is modelled by a Cox-Ingersoll- Ross (CIR) process and the firm's objective is to maximize the total expected flow of discounted dividends until a possible insolvency time. We find an optimal dividend payout policy which is such that the surplus process is kept below an endogenously determined stochastic threshold expressed as a decreasing function $r \mapsto b(r)$ of the current interest rate value. We also prove that the value function of the singular control problem solves a variational inequality associated to a second-order, non-degenerate elliptic operator, with a gradient constraint.

Suggested Citation

  • Bandini, Elena & de Angelis, Tiziano & Ferrari, Giorgio & Gozzi, Fausto, 2020. "Optimal Dividend Payout under Stochastic Discounting," Center for Mathematical Economics Working Papers 636, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:636
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2943684/2943685
    File Function: First Version, 2020
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tiziano Angelis, 2020. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Finance and Stochastics, Springer, vol. 24(1), pages 71-123, January.
    2. Peter Grandits, 2015. "An optimal consumption problem in finite time with a constraint on the ruin probability," Finance and Stochastics, Springer, vol. 19(4), pages 791-847, October.
    3. Eisenberg, Julia, 2015. "Optimal dividends under a stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 259-266.
    4. Jiang, Huanqun, 2018. "Optimal barrier strategy for spectrally negative Lévy process discounted by a class of exponential Lévy processes," Annals of Actuarial Science, Cambridge University Press, vol. 12(2), pages 326-337, September.
    5. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    6. Akyildirim, Erdinç & Güney, I. Ethem & Rochet, Jean-Charles & Soner, H. Mete, 2014. "Optimal dividend policy with random interest rates," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 93-101.
    7. Bayraktar, Erhan & Kyprianou, Andreas E. & Yamazaki, Kazutoshi, 2013. "On Optimal Dividends In The Dual Model," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 359-372, September.
    8. Julia Eisenberg & Yuliya Mishura, 2018. "An Exponential Cox-Ingersoll-Ross Process as Discounting Factor," Papers 1808.10355, arXiv.org.
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    10. Erhan Bayraktar & Masahiko Egami, 2010. "A unified treatment of dividend payment problems under fixed cost and implementation delays," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 325-351, April.
    11. Jiyang Tan & Chun Li & Ziqiang Li & Xiangqun Yang & Bicheng Zhang, 2015. "Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 61-83, August.
    12. Suresh P. Sethi & Michael I. Taksar, 2002. "Optimal Financing of a Corporation Subject To Random Returns," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 155-172, April.
    13. Løkka, Arne & Zervos, Mihail, 2008. "Optimal dividend and issuance of equity policies in the presence of proportional costs," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 954-961, June.
    14. Shane Frederick & George Loewenstein & Ted O'Donoghue, 2002. "Time Discounting and Time Preference: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 351-401, June.
    15. A. Max Reppen & Jean‐Charles Rochet & H. Mete Soner, 2020. "Optimal dividend policies with random profitability," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 228-259, January.
    16. Xie, Jie-hua & Zou, Wei, 2010. "Expected present value of total dividends in a delayed claims risk model under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 415-422, April.
    17. Radner, Roy & Shepp, Larry, 1996. "Risk vs. profit potential: A model for corporate strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1373-1393, August.
    18. Zailei Cheng, 2017. "Optimal Dividends in the Dual Risk Model under a Stochastic Interest Rate," Papers 1705.08411, arXiv.org.
    19. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    20. Eisenberg, Julia & Krühner, Paul, 2017. "A note on the optimal dividends paid in a foreign currency," Annals of Actuarial Science, Cambridge University Press, vol. 11(1), pages 67-73, March.
    21. Giorgio Ferrari & Patrick Schuhmann, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Papers 1804.04870, arXiv.org, revised May 2019.
    22. Zailei Cheng, 2017. "Optimal dividends in the dual risk model under a stochastic interest rate," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-16, March.
    23. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    2. Andrea Bovo & Tiziano De Angelis & Jan Palczewski, 2023. "Zero-sum stopper vs. singular-controller games with constrained control directions," Papers 2306.05113, arXiv.org, revised Feb 2024.
    3. Cai, Cheng & De Angelis, Tiziano, 2023. "A change of variable formula with applications to multi-dimensional optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 33-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    2. Tiziano Angelis, 2020. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Finance and Stochastics, Springer, vol. 24(1), pages 71-123, January.
    3. Giorgio Ferrari & Patrick Schuhmann, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Papers 1804.04870, arXiv.org, revised May 2019.
    4. Ferrari, Giorgio & Schuhmann, Patrick, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Center for Mathematical Economics Working Papers 595, Center for Mathematical Economics, Bielefeld University.
    5. Ernst, Philip A. & Imerman, Michael B. & Shepp, Larry & Zhou, Quan, 2022. "Fiscal stimulus as an optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1091-1108.
    6. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    7. Décamps, Jean-Paul & Villeneuve, Stéphane, 2022. "Learning about profitability and dynamic cash management," Journal of Economic Theory, Elsevier, vol. 205(C).
    8. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    9. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    10. Andrea Barth & Santiago Moreno–Bromberg & Oleg Reichmann, 2016. "A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 447-472, March.
    11. Alex S. L. Tse, 2020. "Dividend policy and capital structure of a defaultable firm," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 961-994, July.
    12. Giorgio Ferrari & Patrick Schuhmann & Shihao Zhu, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Papers 2111.03724, arXiv.org, revised Jun 2022.
    13. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2021. "Optimal Dividends under Markov-Modulated Bankruptcy Level," Center for Mathematical Economics Working Papers 657, Center for Mathematical Economics, Bielefeld University.
    14. Kristoffer Lindensjö & Filip Lindskog, 2020. "Optimal dividends and capital injection under dividend restrictions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 461-487, December.
    15. Chen, Shumin & Wang, Xi & Deng, Yinglu & Zeng, Yan, 2016. "Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 27-37.
    16. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    17. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    18. A. Max Reppen & Jean‐Charles Rochet & H. Mete Soner, 2020. "Optimal dividend policies with random profitability," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 228-259, January.
    19. Décamps, Jean-Paul & Mariotti, Thomas & Rochet, Jean-Charles & Villeneuve, Stéphane, 2008. "Free Cash-Flow, Issuance Costs and Stock Price Volatility," IDEI Working Papers 518, Institut d'Économie Industrielle (IDEI), Toulouse.
    20. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.