IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0503137.html
   My bibliography  Save this paper

Pricing options with VG model using FFT

Author

Listed:
  • Andrey Itkin

Abstract

We discuss various analytic and numerical methods that have been used to get option prices within a framework of the VG model. We show that some popular methods, for instance, Carr-Madan's FFT method could blow up for certain values of the model parameters even for an European vanilla option. Alternative methods - one originally proposed by Lewis, and Black-Scholes-wise method are considered that seem to work fine for any value of the VG parameters. Test examples are given to demonstrate efficiency of these methods. Convergency of all methods is also discussed.}

Suggested Citation

  • Andrey Itkin, 2005. "Pricing options with VG model using FFT," Papers physics/0503137, arXiv.org, revised Jan 2010.
  • Handle: RePEc:arx:papers:physics/0503137
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0503137
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar El Euch & Mathieu Rosenbaum, 2016. "The characteristic function of rough Heston models," Papers 1609.02108, arXiv.org.
    2. Ricardo Crisóstomo & Lorena Couso, 2018. "Financial density forecasts: A comprehensive comparison of risk‐neutral and historical schemes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 589-603, August.
    3. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    4. Tat Lung Chan, 2017. "Singular Fourier-Pad\'e Series Expansion of European Option Prices," Papers 1706.06709, arXiv.org, revised Nov 2017.
    5. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    2. Lorenzo Torricelli, 2012. "Valuation of asset and volatility derivatives using decoupled time-changed L\'evy processes," Papers 1210.5479, arXiv.org, revised Jan 2015.
    3. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    4. Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.
    5. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    6. Bjørn Eraker & Ivan Shaliastovich, 2008. "An Equilibrium Guide To Designing Affine Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 519-543, October.
    7. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    8. Stefan Gerhold & Max Kleinert & Piet Porkert & Mykhaylo Shkolnikov, 2012. "Small time central limit theorems for semimartingales with applications," Papers 1208.4282, arXiv.org.
    9. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    10. Mei Xing, 2017. "Existence Conditions of Super-Replication Cost in a Multinomial Model," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 9(4), pages 185-195, August.
    11. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    12. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    13. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    14. Simi, Wei W. & Wang, Xiaoli, 2013. "Time-changed Lévy jump processes with GARCH model on reverse convertibles," Review of Financial Economics, Elsevier, vol. 22(4), pages 206-212.
    15. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    16. Fisher, Travis & Pulido, Sergio & Ruf, Johannes, 2019. "Financial models with defaultable numéraires," LSE Research Online Documents on Economics 84973, London School of Economics and Political Science, LSE Library.
    17. Mahmoud Zarepour & Thierry Bedard & Andre Dabrowski, 2008. "Return and Value at Risk using the Dirichlet Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(3), pages 205-218.
    18. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    19. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    20. Nicolas Huth & Frédéric Abergel, 2012. "The times change: multivariate subordination, empirical facts," Post-Print hal-00620841, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0503137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.