IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Conditional Expectation as Quantile Derivative

  • Dirk Tasche

For a linear combination of random variables, fix some confidence level and consider the quantile of the combination at this level. We are interested in the partial derivatives of the quantile with respect to the weights of the random variables in the combination. It turns out that under suitable conditions on the joint distribution of the random variables the derivatives exist and coincide with the conditional expectations of the variables given that their combination just equals the quantile. Moreover, using this result, we deduce formulas for the derivatives with respect to the weights of the variables for the so-called expected shortfall (first or higher moments) of the combination. Finally, we study in some more detail the coherence properties of the expected shortfall in case it is defined as a first conditional moment. Key words: quantile; value-at-risk; quantile derivative; conditional expectation; expected shortfall; conditional value-at-risk; coherent risk measure.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/math/0104190
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number math/0104190.

as
in new window

Length:
Date of creation: Apr 2001
Date of revision:
Handle: RePEc:arx:papers:math/0104190
Contact details of provider: Web page: http://arxiv.org/

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0104190. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.