IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.20837.html

Constrained deep learning for pricing and hedging european options in incomplete markets

Author

Listed:
  • Nicolas Baradel

Abstract

In incomplete financial markets, pricing and hedging European options lack a unique no-arbitrage solution due to unhedgeable risks. This paper introduces a constrained deep learning approach to determine option prices and hedging strategies that minimize the Profit and Loss (P&L) distribution around zero. We employ a single neural network to represent the option price function, with its gradient serving as the hedging strategy, optimized via a loss function enforcing the self-financing portfolio condition. A key challenge arises from the non-smooth nature of option payoffs (e.g., vanilla calls are non-differentiable at-the-money, while digital options are discontinuous), which conflicts with the inherent smoothness of standard neural networks. To address this, we compare unconstrained networks against constrained architectures that explicitly embed the terminal payoff condition, drawing inspiration from PDE-solving techniques. Our framework assumes two tradable assets: the underlying and a liquid call option capturing volatility dynamics. Numerical experiments evaluate the method on simple options with varying non-smoothness, the exotic Equinox option, and scenarios with market jumps for robustness. Results demonstrate superior P&L distributions, highlighting the efficacy of constrained networks in handling realistic payoffs. This work advances machine learning applications in quantitative finance by integrating boundary constraints, offering a practical tool for pricing and hedging in incomplete markets.

Suggested Citation

  • Nicolas Baradel, 2025. "Constrained deep learning for pricing and hedging european options in incomplete markets," Papers 2511.20837, arXiv.org.
  • Handle: RePEc:arx:papers:2511.20837
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.20837
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    2. Nacira Agram & Bernt Øksendal & Jan Rems, 2024. "Deep learning for quadratic hedging in incomplete jump market," Digital Finance, Springer, vol. 6(3), pages 463-499, September.
    3. Nacira Agram & Bernt {O}ksendal & Jan Rems, 2024. "Deep learning for quadratic hedging in incomplete jump market," Papers 2407.13688, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joao Felipe Gueiros & Hemanth Chandravamsi & Steven H. Frankel, 2025. "Deep Learning vs. Black-Scholes: Option Pricing Performance on Brazilian Petrobras Stocks," Papers 2504.20088, arXiv.org.
    2. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    3. Anindya Goswami & Nimit Rana, 2024. "A market resilient data-driven approach to option pricing," Papers 2409.08205, arXiv.org.
    4. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    5. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    6. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    7. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    8. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    9. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    10. Jozef Baruník, 2008. "How Do Neural Networks Enhance the Predictability of Central European Stock Returns?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(07-08), pages 358-376, Oktober.
    11. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    12. Jaydip Sen & Tamal Datta Chaudhuri, 2017. "A Time Series Analysis-Based Forecasting Framework for the Indian Healthcare Sector," Papers 1705.01144, arXiv.org.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Philippe Paquet, 1997. "L'utilisation des réseaux de neurones artificiels en finance," Working Papers 1997-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    15. Wolff, Christian & Bams, Dennis & Lehnert, Thorsten, 2005. "Loss Functions in Option Valuation: A Framework for Model Selection," CEPR Discussion Papers 4960, C.E.P.R. Discussion Papers.
    16. Guanhao Feng & Jingyu He & Nicholas G. Polson, 2018. "Deep Learning for Predicting Asset Returns," Papers 1804.09314, arXiv.org, revised Apr 2018.
    17. Saerom Park & Jaewook Lee & Youngdoo Son, 2016. "Predicting Market Impact Costs Using Nonparametric Machine Learning Models," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
    18. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
    19. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    20. Cabrera Llanos Agustín Ignacio & Ortíz Arango Francisco, 2012. "Pronóstico del rendimiento del IPC (Índice de Precios y Cotizaciones)mediante el uso de redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 57(2), pages 63-81, abril-jun.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.20837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.