IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.20837.html
   My bibliography  Save this paper

Constrained deep learning for pricing and hedging european options in incomplete markets

Author

Listed:
  • Nicolas Baradel

Abstract

In incomplete financial markets, pricing and hedging European options lack a unique no-arbitrage solution due to unhedgeable risks. This paper introduces a constrained deep learning approach to determine option prices and hedging strategies that minimize the Profit and Loss (P&L) distribution around zero. We employ a single neural network to represent the option price function, with its gradient serving as the hedging strategy, optimized via a loss function enforcing the self-financing portfolio condition. A key challenge arises from the non-smooth nature of option payoffs (e.g., vanilla calls are non-differentiable at-the-money, while digital options are discontinuous), which conflicts with the inherent smoothness of standard neural networks. To address this, we compare unconstrained networks against constrained architectures that explicitly embed the terminal payoff condition, drawing inspiration from PDE-solving techniques. Our framework assumes two tradable assets: the underlying and a liquid call option capturing volatility dynamics. Numerical experiments evaluate the method on simple options with varying non-smoothness, the exotic Equinox option, and scenarios with market jumps for robustness. Results demonstrate superior P&L distributions, highlighting the efficacy of constrained networks in handling realistic payoffs. This work advances machine learning applications in quantitative finance by integrating boundary constraints, offering a practical tool for pricing and hedging in incomplete markets.

Suggested Citation

  • Nicolas Baradel, 2025. "Constrained deep learning for pricing and hedging european options in incomplete markets," Papers 2511.20837, arXiv.org.
  • Handle: RePEc:arx:papers:2511.20837
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.20837
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.20837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.