Author
Abstract
For long term investments, model portfolios are defined at the level of indexes, a setup known as Strategic Asset Allocation (SAA). The possible outcomes at a scale of a few decades can be obtained by Monte Carlo simulations, resulting in a probability density for the possible portfolio values at the investment horizon. Such studies are critical for long term wealth plannings, for example in the financial component of social insurances or in accumulated capital for retirement. The quality of the results depends on two inputs: the process used for the simulations and its parameters. The base model is a constant drift, a constant covariance and normal innovations, as pioneered by Bachelier. Beyond this model, this document presents in details a multivariate process that incorporate the most recent advances in the models for financial time series. This includes the negative correlations of the returns at a scale of a few years, the heteroskedasticity (i.e. the volatility' dynamics), and the fat tails and asymmetry for the distributions of returns. For the parameters, the quantitative outcomes depend critically on the estimate for the drift, because this is a non random contribution acting at each time step. Replacing the point forecast by a probabilistic forecast allows us to analyze the impact of the drift values, and then to incorporate this uncertainty in the Monte Carlo simulations.
Suggested Citation
Gilles Zumbach, 2025.
"Random processes for long-term market simulations,"
Papers
2511.18125, arXiv.org.
Handle:
RePEc:arx:papers:2511.18125
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.18125. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.