IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.08303.html
   My bibliography  Save this paper

Semi-Supervised Treatment Effect Estimation with Unlabeled Covariates via Generalized Riesz Regression

Author

Listed:
  • Masahiro Kato

Abstract

This study investigates treatment effect estimation in the semi-supervised setting, where we can use not only the standard triple of covariates, treatment indicator, and outcome, but also unlabeled auxiliary covariates. For this problem, we develop efficiency bounds and efficient estimators whose asymptotic variance aligns with the efficiency bound. In the analysis, we introduce two different data-generating processes: the one-sample setting and the two-sample setting. The one-sample setting considers the case where we can observe treatment indicators and outcomes for a part of the dataset, which is also called the censoring setting. In contrast, the two-sample setting considers two independent datasets with labeled and unlabeled data, which is also called the case-control setting or the stratified setting. In both settings, we find that by incorporating auxiliary covariates, we can lower the efficiency bound and obtain an estimator with an asymptotic variance smaller than that without such auxiliary covariates.

Suggested Citation

  • Masahiro Kato, 2025. "Semi-Supervised Treatment Effect Estimation with Unlabeled Covariates via Generalized Riesz Regression," Papers 2511.08303, arXiv.org.
  • Handle: RePEc:arx:papers:2511.08303
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.08303
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.08303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.