IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.22122.html
   My bibliography  Save this paper

Direct Bias-Correction Term Estimation for Propensity Scores and Average Treatment Effect Estimation

Author

Listed:
  • Masahiro Kato

Abstract

This study considers the estimation of the average treatment effect (ATE). For ATE estimation, we estimate the propensity score through direct bias-correction term estimation. Let $\{(X_i, D_i, Y_i)\}_{i=1}^{n}$ be the observations, where $X_i \in \mathbb{R}^p$ denotes $p$-dimensional covariates, $D_i \in \{0, 1\}$ denotes a binary treatment assignment indicator, and $Y_i \in \mathbb{R}$ is an outcome. In ATE estimation, the bias-correction term $h_0(X_i, D_i) = \frac{1[D_i = 1]}{e_0(X_i)} - \frac{1[D_i = 0]}{1 - e_0(X_i)}$ plays an important role, where $e_0(X_i)$ is the propensity score, the probability of being assigned treatment $1$. In this study, we propose estimating $h_0$ (or equivalently the propensity score $e_0$) by directly minimizing the prediction error of $h_0$. Since the bias-correction term $h_0$ is essential for ATE estimation, this direct approach is expected to improve estimation accuracy for the ATE. For example, existing studies often employ maximum likelihood or covariate balancing to estimate $e_0$, but these approaches may not be optimal for accurately estimating $h_0$ or the ATE. We present a general framework for this direct bias-correction term estimation approach from the perspective of Bregman divergence minimization and conduct simulation studies to evaluate the effectiveness of the proposed method.

Suggested Citation

  • Masahiro Kato, 2025. "Direct Bias-Correction Term Estimation for Propensity Scores and Average Treatment Effect Estimation," Papers 2509.22122, arXiv.org.
  • Handle: RePEc:arx:papers:2509.22122
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.22122
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.22122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.