IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.04784.html

Insights into Tail-Based and Order Statistics

Author

Listed:
  • Hamidreza Maleki Almani

Abstract

Heavy-tailed phenomena appear across diverse domains --from wealth and firm sizes in economics to network traffic, biological systems, and physical processes-- characterized by the disproportionate influence of extreme values. These distributions challenge classical statistical models, as their tails decay too slowly for conventional approximations to hold. Among their key descriptive measures are quantile contributions, which quantify the proportion of a total quantity (such as income, energy, or risk) attributed to observations above a given quantile threshold. This paper presents a theoretical study of the quantile contribution statistic and its relationship with order statistics. We derive a closed-form expression for the joint cumulative distribution function (CDF) of order statistics and, based on it, obtain an explicit CDF for quantile contributions applicable to small samples. We then investigate the asymptotic behavior of these contributions as the sample size increases, establishing the asymptotic normality of the numerator and characterizing the limiting distribution of the quantile contribution. Finally, simulation studies illustrate the convergence properties and empirical accuracy of the theoretical results, providing a foundation for applying quantile contributions in the analysis of heavy-tailed data.

Suggested Citation

  • Hamidreza Maleki Almani, 2025. "Insights into Tail-Based and Order Statistics," Papers 2511.04784, arXiv.org.
  • Handle: RePEc:arx:papers:2511.04784
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.04784
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    2. Taleb, Nassim Nicholas & Douady, Raphael, 2015. "On the super-additivity and estimation biases of quantile contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 252-260.
    3. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    4. Nassim Nicholas Taleb & Raphaël Douady, 2015. "On the Super-Additivity and Estimation Biases of Quantile Contributions," Post-Print hal-01477963, HAL.
    5. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    6. Taleb, Nassim Nicholas & Douady, Raphael, 2015. "On the super-additivity and estimation biases of quantile contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 252-260.
    7. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    8. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    2. Stephen Morris & Muhamet Yildiz, 2019. "Crises: Equilibrium Shifts and Large Shocks," American Economic Review, American Economic Association, vol. 109(8), pages 2823-2854, August.
    3. Sabiou M. Inoua, 2020. "News-Driven Expectations and Volatility Clustering," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    4. Sabiou Inoua, 2023. "News-driven Expectations and Volatility Clustering," Papers 2309.04876, arXiv.org.
    5. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, March.
    6. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    7. De Backer, Stijn & Rocha, Luis E.C. & Ryckebusch, Jan & Schoors, Koen, 2025. "On the potential of quantum walks for modeling financial return distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    8. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    9. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.
    10. Przemys{l}aw Rola, 2025. "Boltzmann Price: Toward Understanding the Fair Price in High-Frequency Markets," Papers 2507.09734, arXiv.org.
    11. Einmahl, John & He, Y., 2020. "Unified Extreme Value Estimation for Heterogeneous Data," Other publications TiSEM dfe6c38c-823b-4394-b4fd-a, Tilburg University, School of Economics and Management.
    12. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    13. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    14. Schmitt, Noemi & Westerhoff, Frank, 2014. "Speculative behavior and the dynamics of interacting stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 262-288.
    15. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    16. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    17. Bryan Kelly & Hao Jiang, 2013. "Tail Risk and Asset Prices," NBER Working Papers 19375, National Bureau of Economic Research, Inc.
    18. Nassim Nicholas Taleb, 2015. "How to (Not) Estimate Gini Coefficients for Fat Tailed Variables," Papers 1510.04841, arXiv.org.
    19. Jovanovic, Franck & Mantegna, Rosario N. & Schinckus, Christophe, 2019. "When financial economics influences physics: The role of Econophysics," International Review of Financial Analysis, Elsevier, vol. 65(C).
    20. Demetrio Guzzardi & Elisa Palagi & Andrea Roventini & Alessandro Santoro, 2022. "Reconstructing Income Inequality in Italy: New Evidence and Tax Policy Implications from Distributional National Accounts," Sciences Po Economics Publications (main) halshs-03693201, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.04784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.