IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2510.01599.html
   My bibliography  Save this paper

Convex Order and Arbitrage

Author

Listed:
  • Erica Zhang

Abstract

Wiesel and Zhang [2023] established that two probability measures $\mu,\nu$ on $\mathbb{R}^d$ with finite second moments are in convex order (i.e. $\mu \preceq_c \nu$) if and only if $W_2(\nu,\rho)^2-W_2(\mu,\rho)^2 \leq \int |y|^2\nu(dy) - \int |x|^2\mu(dx).$ Let us call a measure $\rho$ maximizing $W_2(\nu,\rho)^2-W_2(\mu,\rho)^2$ the optimal $\rho$. This paper summarizes key findings by Wiesel and Zhang, develops new algorithms enhancing the search of optimal $\rho$, and builds on the paper through constructing a model-independent arbitrage strategy and developing associated numerical methods via the convex function recovered from the optimal $\rho$ through Brenier's theorem. In addition to examining the link between convex order and arbitrage through the lens of optimal transport, the paper also gives a brief survey of functionally generated portfolio in stochastic portfolio theory and offers a conjecture of the link between convex order and arbitrage between two functionally generated portfolios.

Suggested Citation

  • Erica Zhang, 2025. "Convex Order and Arbitrage," Papers 2510.01599, arXiv.org.
  • Handle: RePEc:arx:papers:2510.01599
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2510.01599
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans Buehler, 2006. "Expensive martingales," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 207-218.
    2. Patryk Gierjatowicz & Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch & v{Z}an v{Z}uriv{c}, 2020. "Robust pricing and hedging via neural SDEs," Papers 2007.04154, arXiv.org.
    3. Wiesel Johannes & Zhang Erica, 2023. "An optimal transport-based characterization of convex order," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-15, January.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    5. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    6. Ioannis Karatzas & Johannes Ruf, 2016. "Trading Strategies Generated by Lyapunov Functions," Papers 1603.08245, arXiv.org.
    7. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    8. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    9. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    10. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    11. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    12. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    13. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    14. Johannes Wiesel & Erica Zhang, 2022. "An optimal transport based characterization of convex order," Papers 2207.01235, arXiv.org, revised Mar 2023.
    15. E. Robert Fernholz & Ioannis Karatzas & Johannes Ruf, 2016. "Volatility and Arbitrage," Papers 1608.06121, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    2. Beatrice Acciaio & Mathias Beiglbock & Friedrich Penkner & Walter Schachermayer, 2013. "A model-free version of the fundamental theorem of asset pricing and the super-replication theorem," Papers 1301.5568, arXiv.org, revised Mar 2013.
    3. David Hobson & Anthony Neuberger, 2017. "Model uncertainty and the pricing of American options," Finance and Stochastics, Springer, vol. 21(1), pages 285-329, January.
    4. Nicole Bauerle & Daniel Schmithals, 2019. "Consistent upper price bounds for exotic options given a finite number of call prices and their convergence," Papers 1907.09144, arXiv.org.
    5. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    6. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    7. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    8. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    9. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
    12. Yoshino, Joe Akira, 2003. "Market Risk and Volatility in the Brazilian Stock Market," Journal of Applied Economics, Universidad del CEMA, vol. 6(2), pages 1-19, November.
    13. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    14. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    15. Kim, In Joon & Park, Gun Youb, 2006. "An empirical comparison of implied tree models for KOSPI 200 index options," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 52-71.
    16. Alexander M. G. Cox & Annemarie M. Grass, 2023. "Robust option pricing with volatility term structure -- An empirical study for variance options," Papers 2312.09201, arXiv.org.
    17. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    18. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    19. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    20. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.01599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.