IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.25472.html
   My bibliography  Save this paper

Exponential Hedging for the Ornstein-Uhlenbeck Process in the Presence of Linear Price Impact

Author

Listed:
  • Yan Dolinsky

Abstract

In this work we study a continuous time exponential utility maximization problem in the presence of a linear temporary price impact. More precisely, for the case where the risky asset is given by the Ornstein-Uhlenbeck diffusion process we compute the optimal portfolio strategy and the corresponding value. Our method of solution relies on duality, and it is purely probabilistic.

Suggested Citation

  • Yan Dolinsky, 2025. "Exponential Hedging for the Ornstein-Uhlenbeck Process in the Presence of Linear Price Impact," Papers 2509.25472, arXiv.org.
  • Handle: RePEc:arx:papers:2509.25472
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.25472
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergey Nadtochiy, 2022. "A simple microstructural explanation of the concavity of price impact," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 78-113, January.
    2. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    3. Peter Bank & Yan Dolinsky & Mikl'os R'asonyi, 2021. "What if we knew what the future brings? Optimal investment for a frontrunner with price impact," Papers 2108.04291, arXiv.org, revised May 2022.
    4. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    5. Ludovic Moreau & Johannes Muhle-Karbe & H. Mete Soner, 2017. "Trading With Small Price Impact," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 350-400, April.
    6. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2019. "Optimal trade execution in order books with stochastic liquidity," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 507-541, April.
    7. Paolo Guasoni & Lóránt Nagy & Miklós Rásonyi, 2021. "Young, timid, and risk takers," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1332-1356, October.
    8. Erhan Bayraktar & Thomas Cayé & Ibrahim Ekren, 2021. "Asymptotics for small nonlinear price impact: A PDE approach to the multidimensional case," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 36-108, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Dolinsky & Shir Moshe, 2021. "Utility Indifference Pricing with High Risk Aversion and Small Linear Price Impact," Papers 2111.00451, arXiv.org, revised Jan 2022.
    2. Ulrich Horst & Evgueni Kivman, 2024. "Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies," Finance and Stochastics, Springer, vol. 28(3), pages 759-812, July.
    3. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Càdlàg semimartingale strategies for optimal trade execution in stochastic order book models," Finance and Stochastics, Springer, vol. 25(4), pages 757-810, October.
    4. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2020. "C\`adl\`ag semimartingale strategies for optimal trade execution in stochastic order book models," Papers 2006.05863, arXiv.org, revised Jul 2021.
    5. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2020. "Optimal trade execution in an order book model with stochastic liquidity parameters," Papers 2006.05843, arXiv.org, revised Apr 2021.
    6. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Self-exciting price impact via negative resilience in stochastic order books," Papers 2112.03789, arXiv.org, revised Jul 2022.
    7. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2022. "Reducing Obizhaeva-Wang type trade execution problems to LQ stochastic control problems," Papers 2206.03772, arXiv.org, revised Sep 2023.
    8. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2024. "Reducing Obizhaeva–Wang-type trade execution problems to LQ stochastic control problems," Finance and Stochastics, Springer, vol. 28(3), pages 813-863, July.
    9. Ulrich Horst & Evgueni Kivman, 2021. "Optimal trade execution under small market impact and portfolio liquidation with semimartingale strategies," Papers 2103.05957, arXiv.org, revised Jul 2023.
    10. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2024. "Self-exciting price impact via negative resilience in stochastic order books," Annals of Operations Research, Springer, vol. 336(1), pages 637-659, May.
    11. Peter Bank & Moritz Vo{ss}, 2018. "Optimal investment with transient price impact," Papers 1804.07392, arXiv.org.
    12. Daniel Hern'andez-Hern'andez & Harold A. Moreno-Franco & Jos'e Luis P'erez, 2017. "Periodic strategies in optimal execution with multiplicative price impact," Papers 1705.00284, arXiv.org, revised May 2018.
    13. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    14. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    15. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    16. Yinhong Dong & Donglei Du & Qiaoming Han & Jianfeng Ren & Dachuan Xu, 2024. "A Stackelberg order execution game," Annals of Operations Research, Springer, vol. 336(1), pages 571-604, May.
    17. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    18. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    19. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    20. Aur'elien Alfonsi & Alexander Schied & Florian Klock, 2013. "Multivariate transient price impact and matrix-valued positive definite functions," Papers 1310.4471, arXiv.org, revised Sep 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.25472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.