IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.20194.html
   My bibliography  Save this paper

Identification and Semiparametric Estimation of Conditional Means from Aggregate Data

Author

Listed:
  • Cory McCartan
  • Shiro Kuriwaki

Abstract

We introduce a new method for estimating the mean of an outcome variable within groups when researchers only observe the average of the outcome and group indicators across a set of aggregation units, such as geographical areas. Existing methods for this problem, also known as ecological inference, implicitly make strong assumptions about the aggregation process. We first formalize weaker conditions for identification, which motivates estimators that can efficiently control for many covariates. We propose a debiased machine learning estimator that is based on nuisance functions restricted to a partially linear form. Our estimator also admits a semiparametric sensitivity analysis for violations of the key identifying assumption, as well as asymptotically valid confidence intervals for local, unit-level estimates under additional assumptions. Simulations and validation on real-world data where ground truth is available demonstrate the advantages of our approach over existing methods. Open-source software is available which implements the proposed methods.

Suggested Citation

  • Cory McCartan & Shiro Kuriwaki, 2025. "Identification and Semiparametric Estimation of Conditional Means from Aggregate Data," Papers 2509.20194, arXiv.org.
  • Handle: RePEc:arx:papers:2509.20194
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.20194
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.20194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.