IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.16137.html
   My bibliography  Save this paper

Enhancing OHLC Data with Timing Features: A Machine Learning Evaluation

Author

Listed:
  • Ruslan Tepelyan

Abstract

OHLC bar data is a widely used format for representing financial asset prices over time due to its balance of simplicity and informativeness. Bloomberg has recently introduced a new bar data product that includes additional timing information-specifically, the timestamps of the open, high, low, and close prices within each bar. In this paper, we investigate the impact of incorporating this timing data into machine learning models for predicting volume-weighted average price (VWAP). Our experiments show that including these features consistently improves predictive performance across multiple ML architectures. We observe gains across several key metrics, including log-likelihood, mean squared error (MSE), $R^2$, conditional variance estimation, and directional accuracy.

Suggested Citation

  • Ruslan Tepelyan, 2025. "Enhancing OHLC Data with Timing Features: A Machine Learning Evaluation," Papers 2509.16137, arXiv.org.
  • Handle: RePEc:arx:papers:2509.16137
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.16137
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Humphery-Jenner, Mark L., 2011. "Optimal VWAP trading under noisy conditions," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2319-2329, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Gu'eant & Guillaume Royer, 2013. "VWAP execution and guaranteed VWAP," Papers 1306.2832, arXiv.org, revised May 2014.
    2. Olivier Guéant & Royer Guillaume, 2014. "VWAP execution and guaranteed VWAP," Post-Print hal-01393121, HAL.
    3. Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
    4. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    5. Szűcs, Balázs Árpád, 2017. "Forecasting intraday volume: Comparison of two early models," Finance Research Letters, Elsevier, vol. 21(C), pages 249-258.
    6. Humphery-Jenner, M., 2011. "High Frequency Trading, Information, and Takeovers," Other publications TiSEM 30aa1477-0fb2-46ed-a5eb-f, Tilburg University, School of Economics and Management.
    7. Humphery-Jenner, M., 2011. "High Frequency Trading, Information, and Takeovers," Other publications TiSEM 0e6dd147-6f57-4f32-b265-f, Tilburg University, School of Economics and Management.
    8. Remi Genet, 2025. "Deep Learning for VWAP Execution in Crypto Markets: Beyond the Volume Curve," Papers 2502.13722, arXiv.org, revised Apr 2025.
    9. Dutt, Tanuj & Humphery-Jenner, Mark, 2013. "Stock return volatility, operating performance and stock returns: International evidence on drivers of the ‘low volatility’ anomaly," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 999-1017.
    10. Enzo Busseti & Stephen Boyd, 2015. "Volume Weighted Average Price Optimal Execution," Papers 1509.08503, arXiv.org.
    11. Humphery-Jenner, M., 2011. "High Frequency Trading, Information, and Takeovers," Discussion Paper 2011-047, Tilburg University, Center for Economic Research.
    12. Markus Baldauf & Christoph Frei & Joshua Mollner, 2022. "Principal Trading Arrangements: When Are Common Contracts Optimal?," Management Science, INFORMS, vol. 68(4), pages 3112-3128, April.
    13. Qixuan Luo & Yu Shi & Xuan Zhou & Handong Li, 2021. "Research on the Effects of Institutional Liquidation Strategies on the Market Based on Multi-agent Model," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1025-1049, December.
    14. Peter B. Lerner, 2022. "Fourier Integral Operator Model of Market Liquidity: The Chinese Experience 2009–2010," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    15. Wang, Kaiyang & Yang, Haizhen, 2018. "The price-volume relationship caused by asset allocation based on Kelly criterion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1-8.
    16. Frei, Christoph & Mitra, Joshua, 2021. "Optimal closing benchmarks," Finance Research Letters, Elsevier, vol. 40(C).
    17. P. B. Lerner, 2020. "Dual State-Space Model of Market Liquidity: The Chinese Experience 2009-2010," Papers 2004.06200, arXiv.org, revised May 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.16137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.