IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.03669.html
   My bibliography  Save this paper

Mean-Variance Stackelberg Games with Asymmetric Information

Author

Listed:
  • Yu-Jui Huang
  • Shihao Zhu

Abstract

This paper considers two investors who perform mean-variance portfolio selection with asymmetric information: one knows the true stock dynamics, while the other has to infer the true dynamics from observed stock evolution. Their portfolio selection is interconnected through relative performance concerns, i.e., each investor is concerned about not only her terminal wealth, but how it compares to the average terminal wealth of both investors. We model this as Stackelberg competition: the partially-informed investor (the "follower") observes the trading behavior of the fully-informed investor (the "leader") and decides her trading strategy accordingly; the leader, anticipating the follower's response, in turn selects a trading strategy that best suits her objective. To prevent information leakage, the leader adopts a randomized strategy selected under an entropy-regularized mean-variance objective, where the entropy regularizer quantifies the randomness of a chosen strategy. The follower, on the other hand, observes only the actual trading actions of the leader (sampled from the randomized strategy), but not the randomized strategy itself. Her mean-variance objective is thus a random field, in the form of an expectation conditioned on a realized path of the leader's trading actions. In the idealized case of continuous sampling of the leader's trading actions, we derive a Stackelberg equilibrium where the follower's trading strategy depends linearly on the actual trading actions of the leader and the leader samples her trading actions from Gaussian distributions. In the realistic case of discrete sampling of the leader's trading actions, the above becomes an $\epsilon$-Stackelberg equilibrium.

Suggested Citation

  • Yu-Jui Huang & Shihao Zhu, 2025. "Mean-Variance Stackelberg Games with Asymmetric Information," Papers 2509.03669, arXiv.org.
  • Handle: RePEc:arx:papers:2509.03669
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.03669
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Jinhui & Li, Xiaolong & Ma, Guiyuan & Kennedy, Adrian Patrick, 2023. "Strategic trading with information acquisition and long-memory stochastic liquidity," European Journal of Operational Research, Elsevier, vol. 308(1), pages 480-495.
    2. Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
    3. Paolo Guasoni, 2006. "Asymmetric Information in Fads Models," Finance and Stochastics, Springer, vol. 10(2), pages 159-177, April.
    4. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    5. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    6. Daniel Lacker & Thaleia Zariphopoulou, 2019. "Mean field and n‐agent games for optimal investment under relative performance criteria," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1003-1038, October.
    7. repec:dau:papers:123456789/6927 is not listed on IDEAS
    8. Min Dai & Yuchao Dong & Yanwei Jia, 2023. "Learning equilibrium mean‐variance strategy," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1166-1212, October.
    9. José Corcuera & Peter Imkeller & Arturo Kohatsu-Higa & David Nualart, 2004. "Additional utility of insiders with imperfect dynamical information," Finance and Stochastics, Springer, vol. 8(3), pages 437-450, August.
    10. Yu-Jui Huang & Zhou Zhou, 2021. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 428-451, May.
    11. Gilles-Edouard Espinosa & Nizar Touzi, 2015. "Optimal Investment Under Relative Performance Concerns," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 221-257, April.
    12. Paolo Guasoni, 2006. "Asymmetric Information in Fads Models," Finance and Stochastics, Springer, vol. 10(2), pages 159-177, April.
    13. Gârleanu, Nicolae & Pedersen, Lasse Heje, 2016. "Dynamic portfolio choice with frictions," Journal of Economic Theory, Elsevier, vol. 165(C), pages 487-516.
    14. Paulwin Graewe & Ulrich Horst & Jinniao Qiu, 2013. "A Non-Markovian Liquidation Problem and Backward SPDEs with Singular Terminal Conditions," Papers 1309.0461, arXiv.org, revised Jan 2015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    2. Curatola, Giuliano, 2022. "Price impact, strategic interaction and portfolio choice," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    3. Luca De Gennaro Aquino & Sascha Desmettre & Yevhen Havrylenko & Mogens Steffensen, 2024. "Equilibrium control theory for Kihlstrom-Mirman preferences in continuous time," Papers 2407.16525, arXiv.org, revised Oct 2024.
    4. Huy N. Chau & Miklos Rasonyi, 2016. "On optimal investment with processes of long or negative memory," Papers 1608.00768, arXiv.org, revised Mar 2017.
    5. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, December.
    6. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2017. "Optimal portfolios with anticipating information on the stochastic interest rate," Papers 1711.03642, arXiv.org, revised Jul 2024.
    7. Li-Hsien Sun, 2022. "Mean Field Games with Heterogeneous Groups: Application to Banking Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 130-167, January.
    8. Chao Deng & Xizhi Su & Chao Zhou, 2024. "Peer effect and dynamic ALM games among insurers," Mathematics and Financial Economics, Springer, volume 18, number 11, December.
    9. Nicole Bauerle & Tamara Goll, 2025. "Relative portfolio optimization via a value at risk based constraint," Papers 2503.20340, arXiv.org, revised Jun 2025.
    10. Alain Bensoussan & Guiyuan Ma & Chi Chung Siu & Sheung Chi Phillip Yam, 2022. "Dynamic mean–variance problem with frictions," Finance and Stochastics, Springer, vol. 26(2), pages 267-300, April.
    11. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    12. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    13. Oumar Mbodji & Traian A. Pirvu, 2025. "Portfolio time consistency and utility weighted discount rates," Mathematics and Financial Economics, Springer, volume 19, number 2, December.
    14. Nicole Bäuerle & Tamara Göll, 2023. "Nash equilibria for relative investors via no-arbitrage arguments," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(1), pages 1-23, February.
    15. Qian Lei & Chi Seng Pun, 2021. "Nonlocality, Nonlinearity, and Time Inconsistency in Stochastic Differential Games," Papers 2112.14409, arXiv.org, revised Sep 2023.
    16. Yuling Max Chen & Bin Li & David Saunders, 2025. "Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics," Papers 2501.16659, arXiv.org.
    17. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.
    18. Guanxing Fu & Ulrich Horst, 2025. "Mean Field Portfolio Games with Epstein-Zin Preferences," Papers 2505.07231, arXiv.org.
    19. Julia Ackermann & Thomas Kruse & Mikhail Urusov, 2021. "Càdlàg semimartingale strategies for optimal trade execution in stochastic order book models," Finance and Stochastics, Springer, vol. 25(4), pages 757-810, October.
    20. Michail Anthropelos & Tianran Geng & Thaleia Zariphopoulou, 2020. "Competition in Fund Management and Forward Relative Performance Criteria," Papers 2011.00838, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.03669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.