IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.11982.html
   My bibliography  Save this paper

A note on simulation methods for the Dirichlet-Laplace prior

Author

Listed:
  • Luis Gruber
  • Gregor Kastner
  • Anirban Bhattacharya
  • Debdeep Pati
  • Natesh Pillai
  • David Dunson

Abstract

Bhattacharya et al. (2015, Journal of the American Statistical Association 110(512): 1479-1490) introduce a novel prior, the Dirichlet-Laplace (DL) prior, and propose a Markov chain Monte Carlo (MCMC) method to simulate posterior draws under this prior in a conditionally Gaussian setting. The original algorithm samples from conditional distributions in the wrong order, i.e., it does not correctly sample from the joint posterior distribution of all latent variables. This note details the issue and provides two simple solutions: A correction to the original algorithm and a new algorithm based on an alternative, yet equivalent, formulation of the prior. This corrigendum does not affect the theoretical results in Bhattacharya et al. (2015).

Suggested Citation

  • Luis Gruber & Gregor Kastner & Anirban Bhattacharya & Debdeep Pati & Natesh Pillai & David Dunson, 2025. "A note on simulation methods for the Dirichlet-Laplace prior," Papers 2508.11982, arXiv.org.
  • Handle: RePEc:arx:papers:2508.11982
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.11982
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Geweke, 2004. "Getting It Right: Joint Distribution Tests of Posterior Simulators," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 799-804, January.
    2. Florian Huber & Gregor Kastner & Michael Pfarrhofer, 2025. "Introducing shrinkage in heavy-tailed state space models to predict equity excess returns," Empirical Economics, Springer, vol. 68(2), pages 535-553, February.
    3. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    4. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    5. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    6. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    2. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Feb 2025.
    4. Hauzenberger Niko & Huber Florian & Koop Gary, 2024. "Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
    5. Martin Feldkircher & Luis Gruber & Florian Huber & Gregor Kastner, 2024. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian vector autoregressions?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2126-2145, September.
    6. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    7. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    8. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    9. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
    10. Bruno P. C. Levy & Hedibert F. Lopes, 2021. "Dynamic Ordering Learning in Multivariate Forecasting," Papers 2101.04164, arXiv.org, revised Nov 2021.
    11. Cubadda, Gianluca & Grassi, Stefano & Guardabascio, Barbara, 2025. "The time-varying Multivariate Autoregressive Index model," International Journal of Forecasting, Elsevier, vol. 41(1), pages 175-190.
    12. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    13. Manfred M. Fischer & Niko Hauzenberger & Florian Huber & Michael Pfarrhofer, 2023. "General Bayesian time‐varying parameter vector autoregressions for modeling government bond yields," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 69-87, January.
    14. Necati Tekatli, 2007. "Understanding Sources of the Change in International Business Cycles," Working Papers 335, Barcelona School of Economics.
    15. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    16. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2023. "Modelling Okun’s law: Does non-Gaussianity matter?," Empirical Economics, Springer, vol. 64(5), pages 2183-2213, May.
    17. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    18. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    19. Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
    20. Maximilian Boeck & Massimiliano Marcellino & Michael Pfarrhofer & Tommaso Tornese, 2024. "Predicting Tail-Risks for the Italian Economy," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(3), pages 339-366, November.
    21. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2021. "Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty," Journal of Econometrics, Elsevier, vol. 225(1), pages 47-73.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.11982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.