IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.23414.html
   My bibliography  Save this paper

Complexity of Financial Time Series: Multifractal and Multiscale Entropy Analyses

Author

Listed:
  • Oday Masoudi
  • Farhad Shahbazi
  • Mohammad Sharifi

Abstract

We employed Multifractal Detrended Fluctuation Analysis (MF-DFA) and Refined Composite Multiscale Sample Entropy (RCMSE) to investigate the complexity of Bitcoin, GBP/USD, gold, and natural gas price log-return time series. This study provides a comparative analysis of these markets and offers insights into their predictability and associated risks. Each tool presents a unique method to quantify time series complexity. The RCMSE and MF-DFA methods demonstrate a higher complexity for the Bitcoin time series than others. It is discussed that the increased complexity of Bitcoin may be attributable to the presence of higher nonlinear correlations within its log-return time series.

Suggested Citation

  • Oday Masoudi & Farhad Shahbazi & Mohammad Sharifi, 2025. "Complexity of Financial Time Series: Multifractal and Multiscale Entropy Analyses," Papers 2507.23414, arXiv.org.
  • Handle: RePEc:arx:papers:2507.23414
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.23414
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Gong, Jue & Li, Zhao-Chen & Zhu, You, 2024. "Who dominate the information flowing between innovative and traditional financial assets? A multiscale entropy-based approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 329-358.
    2. Zhao, Xiaojun & Ji, Mengfan & Zhang, Na & Shang, Pengjian, 2020. "Permutation transition entropy: Measuring the dynamical complexity of financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    4. Mastroeni, Loretta & Mazzoccoli, Alessandro & Vellucci, Pierluigi, 2024. "Wavelet entropy and complexity–entropy curves approach for energy commodity price predictability amid the transition to alternative energy sources," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Jing Wang & Pengjian Shang & Xiaojun Zhao & Jianan Xia, 2013. "Multiscale Entropy Analysis Of Traffic Time Series," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-14.
    6. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    7. Yao, Can-Zhong & Liu, Cheng & Ju, Wei-Jia, 2020. "Multifractal analysis of the WTI crude oil market, US stock market and EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Thuraisingham, Ranjit A. & Gottwald, Georg A., 2006. "On multiscale entropy analysis for physiological data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 323-332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    2. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    5. Yin, Yi & Shang, Pengjian & Ahn, Andrew C. & Peng, Chung-Kang, 2019. "Multiscale joint permutation entropy for complex time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 388-402.
    6. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    7. Chen, Shijian & Shang, Pengjian & Wu, Yue, 2018. "Weighted multiscale Rényi permutation entropy of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 548-570.
    8. Zhuang, Xiaoyang & Wei, Dan, 2022. "Asymmetric multifractality, comparative efficiency analysis of green finance markets: A dynamic study by index-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    9. Zhang, Shuchang & Guo, Yaoqi & Cheng, Hui & Zhang, Hongwei, 2021. "Cross-correlations between price and volume in China's crude oil futures market: A study based on multifractal approaches," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Pan, Yueling & Hou, Lei & Pan, Xue, 2022. "Interplay between stock trading volume, policy, and investor sentiment: A multifractal approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    11. Xu, Kaiye & Shang, Pengjian & Feng, Guochen, 2015. "Multifractal time series analysis using the improved 0–1 test model," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 134-143.
    12. Adekoya, Oluwasegun B. & Asl, Mahdi Ghaemi & Oliyide, Johnson A. & Izadi, Parviz, 2023. "Multifractality and cross-correlation between the crude oil and the European and non-European stock markets during the Russia-Ukraine war," Resources Policy, Elsevier, vol. 80(C).
    13. Gu, Rongbao & Liu, Shengnan, 2022. "Nonlinear analysis of economic policy uncertainty: Based on the data in China, the US and the global," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Zhang, Yali & Shang, Pengjian & He, Jiayi & Xiong, Hui, 2020. "Cumulative Tsallis entropy based on multi-scale permuted distribution of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    15. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    16. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. L. Telesca & T. Matcharashvili & T. Chelidze & N. Zhukova & Z. Javakhishvili, 2015. "Investigating the dynamical features of the time distribution of the reservoir-induced seismicity in Enguri area (Georgia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 117-125, May.
    18. Abdullah, Mohammad & Chowdhury, Mohammad Ashraful Ferdous & Wali Ullah, G.M., 2025. "Asymmetric tail risk dynamics, efficiency and risk spillover among FinTech stocks, cryptocurrencies and traditional assets," Global Finance Journal, Elsevier, vol. 64(C).
    19. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.23414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.