IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09347.html
   My bibliography  Save this paper

A Framework for Predictive Directional Trading Based on Volatility and Causal Inference

Author

Listed:
  • Ivan Letteri

Abstract

Purpose: This study introduces a novel framework for identifying and exploiting predictive lead-lag relationships in financial markets. We propose an integrated approach that combines advanced statistical methodologies with machine learning models to enhance the identification and exploitation of predictive relationships between equities. Methods: We employed a Gaussian Mixture Model (GMM) to cluster nine prominent stocks based on their mid-range historical volatility profiles over a three-year period. From the resulting clusters, we constructed a multi-stage causal inference pipeline, incorporating the Granger Causality Test (GCT), a customised Peter-Clark Momentary Conditional Independence (PCMCI) test, and Effective Transfer Entropy (ETE) to identify robust, predictive linkages. Subsequently, Dynamic Time Warping (DTW) and a K-Nearest Neighbours (KNN) classifier were utilised to determine the optimal time lag for trade execution. The resulting strategy was rigorously backtested. Results: The proposed volatility-based trading strategy, tested from 8 June 2023 to 12 August 2023, demonstrated substantial efficacy. The portfolio yielded a total return of 15.38%, significantly outperforming the 10.39% return of a comparative Buy-and-Hold strategy. Key performance metrics, including a Sharpe Ratio up to 2.17 and a win rate up to 100% for certain pairs, confirmed the strategy's viability. Conclusion: This research contributes a systematic and robust methodology for identifying profitable trading opportunities derived from volatility-based causal relationships. The findings have significant implications for both academic research in financial modelling and the practical application of algorithmic trading, offering a structured approach to developing resilient, data-driven strategies.

Suggested Citation

  • Ivan Letteri, 2025. "A Framework for Predictive Directional Trading Based on Volatility and Causal Inference," Papers 2507.09347, arXiv.org.
  • Handle: RePEc:arx:papers:2507.09347
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09347
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Engle & Clive Granger, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    2. Ivan Letteri & Giuseppe Della Penna & Giovanni De Gasperis & Abeer Dyoub, 2022. "A Stock Trading System for a Medium Volatile Asset using Multi Layer Perceptron," Papers 2201.12286, arXiv.org.
    3. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    4. David S. Bates, 2019. "How Crashes Develop: Intradaily Volatility and Crash Evolution," Journal of Finance, American Finance Association, vol. 74(1), pages 193-238, February.
    5. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    6. Ivan Letteri, 2023. "VolTS: A Volatility-based Trading System to forecast Stock Markets Trend using Statistics and Machine Learning," Papers 2307.13422, arXiv.org, revised Aug 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Letteri, 2023. "VolTS: A Volatility-based Trading System to forecast Stock Markets Trend using Statistics and Machine Learning," Papers 2307.13422, arXiv.org, revised Aug 2023.
    2. Alessia Naccarato & Andrea Pierini & Giovanna Ferraro, 2021. "Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment," Annals of Operations Research, Springer, vol. 299(1), pages 81-99, April.
    3. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    4. Sayat R. Baronyan & İ. İlkay Boduroğlu & Emrah Şener, 2010. "Investigation Of Stochastic Pairs Trading Strategies Under Different Volatility Regimes," Manchester School, University of Manchester, vol. 78(s1), pages 114-134, September.
    5. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    6. Boming Ning & Kiseop Lee, 2024. "Advanced Statistical Arbitrage with Reinforcement Learning," Papers 2403.12180, arXiv.org.
    7. Zhe Huang & Franck Martin, 2017. "Optimal pairs trading strategies in a cointegration framework," Working Papers halshs-01566803, HAL.
    8. Fenghui Yu & Wai-Ki Ching & Chufang Wu & Jia-Wen Gu, 2023. "Optimal Pairs Trading Strategies: A Stochastic Mean–Variance Approach," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 36-55, January.
    9. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    10. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    11. Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun, 2017. "Searching for Inefficiencies in Exchange Rate Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 405-432, March.
    12. Kanjilal, Kakali & Ghosh, Sajal, 2017. "Dynamics of crude oil and gold price post 2008 global financial crisis – New evidence from threshold vector error-correction model," Resources Policy, Elsevier, vol. 52(C), pages 358-365.
    13. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
    14. Boming Ning & Prakash Chakraborty & Kiseop Lee, 2023. "Optimal Entry and Exit with Signature in Statistical Arbitrage," Papers 2309.16008, arXiv.org, revised Mar 2024.
    15. Baiquan Ma & Robert Ślepaczuk, 2022. "The profitability of pairs trading strategies on Hong-Kong stock market: distance, cointegration, and correlation methods," Working Papers 2022-02, Faculty of Economic Sciences, University of Warsaw.
    16. Mar Grande & Florentino Borondo & Juan Carlos Losada & Javier Borondo, 2024. "Anti-Persistent Values of the Hurst Exponent Anticipate Mean Reversion in Pairs Trading: The Cryptocurrencies Market as a Case Study," Mathematics, MDPI, vol. 12(18), pages 1-14, September.
    17. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. Andreas Mikkelsen, 2018. "Pairs trading: the case of Norwegian seafood companies," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 303-318, January.
    19. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    20. Paul Bilokon & Burak Gunduz, 2023. "C++ Design Patterns for Low-latency Applications Including High-frequency Trading," Papers 2309.04259, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.