IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.04663.html
   My bibliography  Save this paper

Model-Estimation-Free, Dense, and High Dimensional Consistent Precision Matrix Estimators

Author

Listed:
  • Mehmet Caner Agostino Capponi Mihailo Stojnic

Abstract

Precision matrix estimation is a cornerstone concept in statistics, economics, and finance. Despite advances in recent years, estimation methods that are simultaneously (i) dense, (ii) consistent, and (iii) model-free are lacking. While each of these targets can be met separately, achieving them together is challenging.We address this gap by introducing a general class of estimators that unifies these features within a nonasymptotic framework, allowing for explicit characterization of the computational complexity, signal-to-noise ratio trade-off. Our analysis identifies three fundamental random quantities, complexity, signal magnitude, and method bias that jointly determine estimation error. A particularly striking result is that ridgeless regression, a tuning-free special case within our class, exhibits the double descent phenomenon. This establishes the first formal precision matrix analogue to the well-known double descent behavior in linear regression. Our theoretical analysis is supported by a thorough empirical study of the S\&P 500 index, where we observe a doubly ascending Sharpe ratio pattern, which complements the double descent phenomenon.

Suggested Citation

  • Mehmet Caner Agostino Capponi Mihailo Stojnic, 2025. "Model-Estimation-Free, Dense, and High Dimensional Consistent Precision Matrix Estimators," Papers 2507.04663, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2507.04663
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.04663
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    2. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    3. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    2. Jungjun Choi & Hyukjun Kwon & Yuan Liao, 2023. "Inference for Low-rank Models without Estimating the Rank," Papers 2311.16440, arXiv.org, revised Oct 2024.
    3. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
    4. Max Heide & Benjamin R. Auer & Frank Schuhmacher, 2025. "Optimal Versus Naive Diversification in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 3-22, January.
    5. Esra Ulasan & A. Özlem Önder, 2023. "Large portfolio optimisation approaches," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 485-497, October.
    6. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2021. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 309-352, September.
    7. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Sparsity and Stability for Minimum-Variance Portfolios," Papers 1910.11840, arXiv.org.
    8. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    9. Caner, Mehmet & Daniele, Maurizio, 2025. "Deep learning based residuals in non-linear factor models: Precision matrix estimation of returns with low signal-to-noise ratio," Journal of Econometrics, Elsevier, vol. 251(C).
    10. Weilong Liu & Yanchu Liu, 2025. "Covariance Matrix Estimation for Positively Correlated Assets," Papers 2507.01545, arXiv.org.
    11. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    12. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    13. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    14. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    15. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    16. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    17. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    18. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    19. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    20. Jack (Peiyao) Ma & Andrea Mantovani & Carlo Reggiani & Annette Broocks & Néstor Duch-Brown, 2024. "The Price Effects of Prohibiting Price Parity Clauses: Evidence from International Hotel Groups," Economics Series Working Papers 1043, University of Oxford, Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.04663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.