IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.04663.html
   My bibliography  Save this paper

A General Class of Model-Free Dense Precision Matrix Estimators

Author

Listed:
  • Mehmet Caner Agostino Capponi Mihailo Stojnic

Abstract

We introduce prototype consistent model-free, dense precision matrix estimators that have broad application in economics. Using quadratic form concentration inequalities and novel algebraic characterizations of confounding dimension reductions, we are able to: (i) obtain non-asymptotic bounds for precision matrix estimation errors and also (ii) consistency in high dimensions; (iii) uncover the existence of an intrinsic signal-to-noise -- underlying dimensions tradeoff; and (iv) avoid exact population sparsity assumptions. In addition to its desirable theoretical properties, a thorough empirical study of the S&P 500 index shows that a tuning parameter-free special case of our general estimator exhibits a doubly ascending Sharpe Ratio pattern, thereby establishing a link with the famous double descent phenomenon dominantly present in recent statistical and machine learning literature.

Suggested Citation

  • Mehmet Caner Agostino Capponi Mihailo Stojnic, 2025. "A General Class of Model-Free Dense Precision Matrix Estimators," Papers 2507.04663, arXiv.org.
  • Handle: RePEc:arx:papers:2507.04663
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.04663
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.04663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.