IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.20972.html
   My bibliography  Save this paper

Wild Bootstrap Inference for Linear Regressions with Many Covariates

Author

Listed:
  • Wenze Li

Abstract

We propose a simple modification to the wild bootstrap procedure and establish its asymptotic validity for linear regression models with many covariates and heteroskedastic errors. Monte Carlo simulations show that the modified wild bootstrap has excellent finite sample performance compared with alternative methods that are based on standard normal critical values, especially when the sample size is small and/or the number of controls is of the same order of magnitude as the sample size.

Suggested Citation

  • Wenze Li, 2025. "Wild Bootstrap Inference for Linear Regressions with Many Covariates," Papers 2506.20972, arXiv.org.
  • Handle: RePEc:arx:papers:2506.20972
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.20972
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
    2. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    3. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A Jackknife Lagrange Multiplier Test With Many Weak Instruments," Econometric Theory, Cambridge University Press, vol. 40(2), pages 447-470, April.
    4. Max-Sebastian Dovì & Anders Bredahl Kock & Sophocles Mavroeidis, 2024. "A Ridge-Regularized Jackknifed Anderson-Rubin Test," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1083-1094, July.
    5. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    6. Wenjie Wang & Yichong Zhang, 2024. "Gradient Wild Bootstrap for Instrumental Variable Quantile Regressions with Weak and Few Clusters," Papers 2408.10686, arXiv.org.
    7. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    8. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    9. Wenjie WANG & Yichong ZHANG, 2024. "Gradient wild bootstrap for instrumental variable quantile regressions with weak and few clusters," Economics and Statistics Working Papers 15-2024, Singapore Management University, School of Economics.
    10. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doko Tchatoka, Firmin & Wang, Wenjie, 2025. "Identification-Robust Two-Stage Bootstrap Tests with Pretesting for Exogeneity," MPRA Paper 125017, University Library of Munich, Germany.
    2. Wenze Li, 2025. "An Empirical Comparison of Weak-IV-Robust Procedures in Just-Identified Models," Papers 2506.18001, arXiv.org.
    3. Liyu Dou & Pengjin Min & Wenjie Wang & Yichong Zhang, 2025. "An Improved Inference for IV Regressions," Papers 2506.23816, arXiv.org.
    4. Dennis Lim & Wenjie Wang & Yichong Zhang, 2024. "A Dimension-Agnostic Bootstrap Anderson-Rubin Test For Instrumental Variable Regressions," Papers 2412.01603, arXiv.org, revised Sep 2025.
    5. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    6. Doko Tchatoka, Firmin & Wang, Wenjie, 2024. "Weak-Identification-Robust Bootstrap Tests after Pretesting for Exogeneity," MPRA Paper 123060, University Library of Munich, Germany.
    7. Qu Feng & Sombut Jaidee & Wenjie Wang, 2025. "Robust Inference with High-Dimensional Instruments," Papers 2506.23834, arXiv.org.
    8. Wenjie Wang & Yichong Zhang, 2024. "Gradient Wild Bootstrap for Instrumental Variable Quantile Regressions with Weak and Few Clusters," Papers 2408.10686, arXiv.org.
    9. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    10. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LLC, vol. 19(1), pages 4-60, March.
    11. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    12. James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
    13. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    14. Johannes W. Ligtenberg, 2023. "Inference in clustered IV models with many and weak instruments," Papers 2306.08559, arXiv.org, revised Oct 2025.
    15. Harold D. Chiang, 2018. "Many Average Partial Effects: with An Application to Text Regression," Papers 1812.09397, arXiv.org, revised Jan 2022.
    16. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    17. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2024. "Cluster-Robust Jackknife and Bootstrap Inference for Binary Response Models," Working Paper 1515, Economics Department, Queen's University.
    18. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2021. "The Wild Bootstrap with a “Small” Number of “Large” Clusters," The Review of Economics and Statistics, MIT Press, vol. 103(2), pages 346-363, May.
    19. James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2024. "Cluster-robust jackknife and bootstrap inference for logistic regression models," Papers 2406.00650, arXiv.org, revised May 2025.
    20. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.20972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.