IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.14612.html
   My bibliography  Save this paper

On Quantum BSDE Solver for High-Dimensional Parabolic PDEs

Author

Listed:
  • Howard Su
  • Huan-Hsin Tseng

Abstract

We propose a quantum machine learning framework for approximating solutions to high-dimensional parabolic partial differential equations (PDEs) that can be reformulated as backward stochastic differential equations (BSDEs). In contrast to popular quantum-classical network hybrid approaches, this study employs the pure Variational Quantum Circuit (VQC) as the core solver without trainable classical neural networks. The quantum BSDE solver performs pathwise approximation via temporal discretization and Monte Carlo simulation, framed as model-based reinforcement learning. We benchmark VQCbased and classical deep neural network (DNN) solvers on two canonical PDEs as representatives: the Black-Scholes and nonlinear Hamilton-Jacobi-Bellman (HJB) equations. The VQC achieves lower variance and improved accuracy in most cases, particularly in highly nonlinear regimes and for out-of-themoney options, demonstrating greater robustness than DNNs. These results, obtained via quantum circuit simulation, highlight the potential of VQCs as scalable and stable solvers for highdimensional stochastic control problems.

Suggested Citation

  • Howard Su & Huan-Hsin Tseng, 2025. "On Quantum BSDE Solver for High-Dimensional Parabolic PDEs," Papers 2506.14612, arXiv.org.
  • Handle: RePEc:arx:papers:2506.14612
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.14612
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.14612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.