IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.14612.html
   My bibliography  Save this paper

On Quantum BSDE Solver for High-Dimensional Parabolic PDEs

Author

Listed:
  • Howard Su
  • Huan-Hsin Tseng

Abstract

We propose a quantum machine learning framework for approximating solutions to high-dimensional parabolic partial differential equations (PDEs) that can be reformulated as backward stochastic differential equations (BSDEs). In contrast to popular quantum-classical network hybrid approaches, this study employs the pure Variational Quantum Circuit (VQC) as the core solver without trainable classical neural networks. The quantum BSDE solver performs pathwise approximation via temporal discretization and Monte Carlo simulation, framed as model-based reinforcement learning. We benchmark VQCbased and classical deep neural network (DNN) solvers on two canonical PDEs as representatives: the Black-Scholes and nonlinear Hamilton-Jacobi-Bellman (HJB) equations. The VQC achieves lower variance and improved accuracy in most cases, particularly in highly nonlinear regimes and for out-of-themoney options, demonstrating greater robustness than DNNs. These results, obtained via quantum circuit simulation, highlight the potential of VQCs as scalable and stable solvers for highdimensional stochastic control problems.

Suggested Citation

  • Howard Su & Huan-Hsin Tseng, 2025. "On Quantum BSDE Solver for High-Dimensional Parabolic PDEs," Papers 2506.14612, arXiv.org.
  • Handle: RePEc:arx:papers:2506.14612
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.14612
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Peruzzo & Jarrod McClean & Peter Shadbolt & Man-Hong Yung & Xiao-Qi Zhou & Peter J. Love & Alán Aspuru-Guzik & Jeremy L. O’Brien, 2014. "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    3. Ye, Zi & Yu, Kai & Guo, Gong-De & Lin, Song, 2024. "Quantum self-organizing feature mapping neural network algorithm based on Grover search algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    4. Abbas, Amira & Ambainis, Andris & Augustino, Brandon & Baertschi, Andreas & Buhrman, Harry & Coffrin, Carleton & Cortiana, Giorgio & Dunjko, Vedran & Egger, Daniel J. & Elmegreen, Bruce G. & Franco, N, 2024. "Challenges and opportunities in quantum optimization," Other publications TiSEM eb4b8a22-9322-4251-8802-9, Tilburg University, School of Economics and Management.
    5. Kamila Zaman & Alberto Marchisio & Muhammad Kashif & Muhammad Shafique, 2024. "PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms," Papers 2407.19857, arXiv.org.
    6. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Junyu Liu & Minzhao Liu & Jin-Peng Liu & Ziyu Ye & Yunfei Wang & Yuri Alexeev & Jens Eisert & Liang Jiang, 2024. "Towards provably efficient quantum algorithms for large-scale machine-learning models," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    9. Enrico Fontana & Dylan Herman & Shouvanik Chakrabarti & Niraj Kumar & Romina Yalovetzky & Jamie Heredge & Shree Hari Sureshbabu & Marco Pistoia, 2024. "Characterizing barren plateaus in quantum ansätze with the adjoint representation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Nobuyuki Yoshioka & Mirko Amico & William Kirby & Petar Jurcevic & Arkopal Dutt & Bryce Fuller & Shelly Garion & Holger Haas & Ikko Hamamura & Alexander Ivrii & Ritajit Majumdar & Zlatko Minev & Mario, 2025. "Krylov diagonalization of large many-body Hamiltonians on a quantum processor," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    11. He, Zhimin & Deng, Maijie & Zheng, Shenggen & Li, Lvzhou & Situ, Haozhen, 2023. "GSQAS: Graph Self-supervised Quantum Architecture Search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Wang, Shaoxuan & Shen, Yingtong & Liu, Xinjian & Zhang, Haoying & Wang, Yukun, 2024. "Variational quantum entanglement classification discrimination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Zhao, Xiumei & Li, Yongmei & Li, Jing & Wang, Shasha & Wang, Song & Qin, Sujuan & Gao, Fei, 2024. "Near-term quantum algorithm for solving the MaxCut problem with fewer quantum resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    14. Sofiene Jerbi & Lukas J. Fiderer & Hendrik Poulsen Nautrup & Jonas M. Kübler & Hans J. Briegel & Vedran Dunjko, 2023. "Quantum machine learning beyond kernel methods," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Camille Grange & Michael Poss & Eric Bourreau, 2024. "An introduction to variational quantum algorithms for combinatorial optimization problems," Annals of Operations Research, Springer, vol. 343(2), pages 847-884, December.
    16. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    17. Alexander Gresch & Martin Kliesch, 2025. "Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Phuong-Nam Nguyen, 2025. "Quantum technology: a financial risk assessment," Digital Finance, Springer, vol. 7(2), pages 133-172, June.
    19. Manuel S. Rudolph & Jacob Miller & Danial Motlagh & Jing Chen & Atithi Acharya & Alejandro Perdomo-Ortiz, 2023. "Synergistic pretraining of parametrized quantum circuits via tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Bingzhi Zhang & Junyu Liu & Xiao-Chuan Wu & Liang Jiang & Quntao Zhuang, 2024. "Dynamical transition in controllable quantum neural networks with large depth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.14612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.