IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59716-z.html
   My bibliography  Save this article

Krylov diagonalization of large many-body Hamiltonians on a quantum processor

Author

Listed:
  • Nobuyuki Yoshioka

    (University of Tokyo
    University of Tokyo)

  • Mirko Amico

    (IBM Quantum T. J. Watson Research Center)

  • William Kirby

    (IBM Quantum T. J. Watson Research Center)

  • Petar Jurcevic

    (IBM Quantum T. J. Watson Research Center)

  • Arkopal Dutt

    (IBM Quantum IBM Research Cambridge)

  • Bryce Fuller

    (IBM Quantum T. J. Watson Research Center)

  • Shelly Garion

    (Haifa University Campus)

  • Holger Haas

    (IBM Quantum T. J. Watson Research Center)

  • Ikko Hamamura

    (IBM Quantum IBM Japan 19-21 Nihonbashi Hakozaki-cho
    NVIDIA G.K.)

  • Alexander Ivrii

    (Haifa University Campus)

  • Ritajit Majumdar

    (IBM Quantum IBM India Research Lab)

  • Zlatko Minev

    (IBM Quantum T. J. Watson Research Center)

  • Mario Motta

    (IBM Quantum T. J. Watson Research Center)

  • Bibek Pokharel

    (IBM Quantum IBM Research Almaden)

  • Pedro Rivero

    (IBM Quantum T. J. Watson Research Center)

  • Kunal Sharma

    (IBM Quantum T. J. Watson Research Center)

  • Christopher J. Wood

    (IBM Quantum T. J. Watson Research Center)

  • Ali Javadi-Abhari

    (IBM Quantum T. J. Watson Research Center)

  • Antonio Mezzacapo

    (IBM Quantum T. J. Watson Research Center)

Abstract

The estimation of low energies of many-body systems is a cornerstone of the computational quantum sciences. Variational quantum algorithms can be used to prepare ground states on pre-fault-tolerant quantum processors, but their lack of convergence guarantees and impractical number of cost function estimations prevent systematic scaling of experiments to large systems. Alternatives to variational approaches are needed for large-scale experiments on pre-fault-tolerant devices. Here, we use a superconducting quantum processor to compute eigenenergies of quantum many-body systems on two-dimensional lattices of up to 56 sites, using the Krylov quantum diagonalization algorithm, an analog of the well-known classical diagonalization technique. We construct subspaces of the many-body Hilbert space using Trotterized unitary evolutions executed on the quantum processor, and classically diagonalize many-body interacting Hamiltonians within those subspaces. These experiments demonstrate exponential convergence towards an estimate of the ground state energy, and show that quantum diagonalization algorithms are poised to complement their classical counterparts at the foundation of computational methods for quantum systems.

Suggested Citation

  • Nobuyuki Yoshioka & Mirko Amico & William Kirby & Petar Jurcevic & Arkopal Dutt & Bryce Fuller & Shelly Garion & Holger Haas & Ikko Hamamura & Alexander Ivrii & Ritajit Majumdar & Zlatko Minev & Mario, 2025. "Krylov diagonalization of large many-body Hamiltonians on a quantum processor," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59716-z
    DOI: 10.1038/s41467-025-59716-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59716-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59716-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stasja Stanisic & Jan Lukas Bosse & Filippo Maria Gambetta & Raul A. Santos & Wojciech Mruczkiewicz & Thomas E. O’Brien & Eric Ostby & Ashley Montanaro, 2022. "Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Abhinav Kandala & Antonio Mezzacapo & Kristan Temme & Maika Takita & Markus Brink & Jerry M. Chow & Jay M. Gambetta, 2017. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets," Nature, Nature, vol. 549(7671), pages 242-246, September.
    3. Alberto Peruzzo & Jarrod McClean & Peter Shadbolt & Man-Hong Yung & Xiao-Qi Zhou & Peter J. Love & Alán Aspuru-Guzik & Jeremy L. O’Brien, 2014. "A variational eigenvalue solver on a photonic quantum processor," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    4. B. L. Higgins & D. W. Berry & S. D. Bartlett & H. M. Wiseman & G. J. Pryde, 2007. "Entanglement-free Heisenberg-limited phase estimation," Nature, Nature, vol. 450(7168), pages 393-396, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhimin & Deng, Maijie & Zheng, Shenggen & Li, Lvzhou & Situ, Haozhen, 2023. "GSQAS: Graph Self-supervised Quantum Architecture Search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Zhao, Xiumei & Li, Yongmei & Li, Jing & Wang, Shasha & Wang, Song & Qin, Sujuan & Gao, Fei, 2024. "Near-term quantum algorithm for solving the MaxCut problem with fewer quantum resources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    3. Bingzhi Zhang & Junyu Liu & Xiao-Chuan Wu & Liang Jiang & Quntao Zhuang, 2024. "Dynamical transition in controllable quantum neural networks with large depth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Alexander McCaskey & Eugene Dumitrescu & Mengsu Chen & Dmitry Lyakh & Travis Humble, 2018. "Validating quantum-classical programming models with tensor network simulations," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-19, December.
    8. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    10. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Ye, Zi & Yu, Kai & Guo, Gong-De & Lin, Song, 2024. "Quantum self-organizing feature mapping neural network algorithm based on Grover search algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    12. Samuel Fern'andez-Lorenzo & Diego Porras & Juan Jos'e Garc'ia-Ripoll, 2020. "Hybrid quantum-classical optimization for financial index tracking," Papers 2008.12050, arXiv.org, revised Oct 2021.
    13. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Abbas, Amira & Ambainis, Andris & Augustino, Brandon & Baertschi, Andreas & Buhrman, Harry & Coffrin, Carleton & Cortiana, Giorgio & Dunjko, Vedran & Egger, Daniel J. & Elmegreen, Bruce G. & Franco, N, 2024. "Challenges and opportunities in quantum optimization," Other publications TiSEM eb4b8a22-9322-4251-8802-9, Tilburg University, School of Economics and Management.
    15. Sun, Yuchen & Li, Dongfen & Xiang, Qiuyu & Yuan, Yuhang & Hu, Zhikang & Hua, Xiaoyu & Jiang, Yangyang & Zhu, Yonghao & Fu, You, 2025. "Scalable quantum convolutional neural network for image classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    16. Kamila Zaman & Alberto Marchisio & Muhammad Kashif & Muhammad Shafique, 2024. "PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms," Papers 2407.19857, arXiv.org.
    17. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Junyu Liu & Minzhao Liu & Jin-Peng Liu & Ziyu Ye & Yunfei Wang & Yuri Alexeev & Jens Eisert & Liang Jiang, 2024. "Towards provably efficient quantum algorithms for large-scale machine-learning models," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    20. Muhammad Junaid Umer & Muhammad Imran Sharif, 2022. "A Comprehensive Survey on Quantum Machine Learning and Possible Applications," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global Scientific Publishing, vol. 13(5), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59716-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.