IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.01101.html
   My bibliography  Save this paper

Learning to optimize convex risk measures: The cases of utility-based shortfall risk and optimized certainty equivalent risk

Author

Listed:
  • Sumedh Gupte
  • Prashanth L. A.
  • Sanjay P. Bhat

Abstract

We consider the problems of estimation and optimization of two popular convex risk measures: utility-based shortfall risk (UBSR) and Optimized Certainty Equivalent (OCE) risk. We extend these risk measures to cover possibly unbounded random variables. We cover prominent risk measures like the entropic risk, expectile risk, monotone mean-variance risk, Value-at-Risk, and Conditional Value-at-Risk as few special cases of either the UBSR or the OCE risk. In the context of estimation, we derive non-asymptotic bounds on the mean absolute error (MAE) and mean-squared error (MSE) of the classical sample average approximation (SAA) estimators of both, the UBSR and the OCE. Next, in the context of optimization, we derive expressions for the UBSR gradient and the OCE gradient under a smooth parameterization. Utilizing these expressions, we propose gradient estimators for both, the UBSR and the OCE. We use the SAA estimator of UBSR in both these gradient estimators, and derive non-asymptotic bounds on MAE and MSE for the proposed gradient estimation schemes. We incorporate the aforementioned gradient estimators into a stochastic gradient (SG) algorithm for optimization. Finally, we derive non-asymptotic bounds that quantify the rate of convergence of our SG algorithm for the optimization of the UBSR and the OCE risk measure.

Suggested Citation

  • Sumedh Gupte & Prashanth L. A. & Sanjay P. Bhat, 2025. "Learning to optimize convex risk measures: The cases of utility-based shortfall risk and optimized certainty equivalent risk," Papers 2506.01101, arXiv.org.
  • Handle: RePEc:arx:papers:2506.01101
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.01101
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.01101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.