IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v48y2012i6p386-395.html
   My bibliography  Save this article

On the computation of optimal monotone mean–variance portfolios via truncated quadratic utility

Author

Listed:
  • Černý, Aleš
  • Maccheroni, Fabio
  • Marinacci, Massimo
  • Rustichini, Aldo

Abstract

We report a surprising link between optimal portfolios generated by a special type of variational preferences called divergence preferences (see Maccheroni et al., 2006) and optimal portfolios generated by classical expected utility. As a special case, we connect optimization of truncated quadratic utility (see Černý, 2003) to the optimal monotone mean–variance portfolios (see Maccheroni et al., 2009), thus simplifying the computation of the latter.

Suggested Citation

  • Černý, Aleš & Maccheroni, Fabio & Marinacci, Massimo & Rustichini, Aldo, 2012. "On the computation of optimal monotone mean–variance portfolios via truncated quadratic utility," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 386-395.
  • Handle: RePEc:eee:mateco:v:48:y:2012:i:6:p:386-395
    DOI: 10.1016/j.jmateco.2012.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406812000614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2012.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cern›, Ales, 2002. "Generalized Sharpe Ratios and Asset Pricing in Incomplete Markets," Royal Economic Society Annual Conference 2002 41, Royal Economic Society.
    2. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    4. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    5. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    6. Aleš Černý & Jan Kallsen, 2008. "Mean–Variance Hedging And Optimal Investment In Heston'S Model With Correlation," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 473-492, July.
    7. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    8. Filipovic, Damir & Kupper, Michael, 2007. "Monotone and cash-invariant convex functions and hulls," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 1-16, July.
    9. Hanqing Jin & Harry Markowitz & Xun Yu Zhou, 2006. "A Note On Semivariance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 53-61, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    2. Aleš Černý, 2020. "Semimartingale theory of monotone mean–variance portfolio allocation," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1168-1178, July.
    3. Samuel Drapeau & Michael Kupper & Antonis Papapantoleon, 2012. "A Fourier Approach to the Computation of CV@R and Optimized Certainty Equivalents," Papers 1212.6732, arXiv.org, revised Dec 2013.
    4. Eric André, 2014. "Crisp Fair Gambles," Working Papers halshs-00984352, HAL.
    5. Yang Shen & Bin Zou, 2022. "Cone-constrained Monotone Mean-Variance Portfolio Selection Under Diffusion Models," Papers 2205.15905, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    2. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    3. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    4. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    5. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised Feb 2024.
    6. Laeven, R.J.A. & Stadje, M.A., 2011. "Entropy Coherent and Entropy Convex Measures of Risk," Discussion Paper 2011-031, Tilburg University, Center for Economic Research.
    7. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    8. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    9. Nendel, Max & Riedel, Frank & Schmeck, Maren Diane, 2021. "A decomposition of general premium principles into risk and deviation," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 193-209.
    10. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    11. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    12. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    13. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    14. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partially Law-Invariant Risk Measures," Papers 2401.17265, arXiv.org.
    15. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    16. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    17. Georgios I. Papayiannis, 2022. "Robust Policy Selection and Harvest Risk Quantification for Natural Resources Management under Model Uncertainty," Papers 2202.05326, arXiv.org.
    18. Aleš Černý, 2020. "Semimartingale theory of monotone mean–variance portfolio allocation," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1168-1178, July.
    19. Louis Raymond Eeckhoudt & Elisa Pagani & Emanuela Rosazza Gianin, 2016. "Prudence, risk measures and the Optimized Certainty Equivalent: a note," Working Papers 07/2016, University of Verona, Department of Economics.
    20. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.

    More about this item

    Keywords

    Optimal portfolio; Truncated quadratic utility; Monotone mean–variance preferences; Divergence preferences; HARA utility; Monotone hull; Translation-invariant hull;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:48:y:2012:i:6:p:386-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.