IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.16106.html
   My bibliography  Save this paper

Pricing Model for Data Assets in Investment-Consumption Framework with Ambiguity

Author

Listed:
  • Xiaoshan Chen
  • Chen Yang
  • Zhou Yang

Abstract

Data assets are data commodities that have been processed, produced, priced, and traded based on actual demand. Reasonable pricing mechanism for data assets is essential for developing the data market and realizing their value. Most existing literature approaches data asset pricing from the seller's perspective, focusing on data properties and collection costs, however, research from the buyer's perspective remains scarce. This gap stems from the nature of data assets: their value lies not in direct revenue generation but in providing informational advantages that enable enhanced decision-making and excess returns. This paper addresses this gap by developing a pricing model based on the informational value of data assets from the buyer's perspective. We determine data asset prices through an implicit function derived from the value functions in two robust investment-consumption problems under ambiguity markets via the indifference pricing principle. By the existing research results, we simplify the value function, using mathematical analysis and differential equation theory, we derive general expressions for data assets price and explore their properties under various conditions. Furthermore, we derive the explicit pricing formulas for specific scenarios and provide numerical illustration to describe how to use our pricing model.

Suggested Citation

  • Xiaoshan Chen & Chen Yang & Zhou Yang, 2025. "Pricing Model for Data Assets in Investment-Consumption Framework with Ambiguity," Papers 2505.16106, arXiv.org.
  • Handle: RePEc:arx:papers:2505.16106
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.16106
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Lassance & Victor DeMiguel & Frédéric Vrins, 2022. "Optimal Portfolio Diversification via Independent Component Analysis," Operations Research, INFORMS, vol. 70(1), pages 55-72, January.
    2. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    3. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    4. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    5. Juan F. Monge & Mercedes Landete & Jos'e L. Ruiz, 2016. "Sharpe portfolio using a cross-efficiency evaluation," Papers 1610.00937, arXiv.org, revised Oct 2016.
    6. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    7. Hakan Kaya, 2017. "Managing ambiguity in asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 18(3), pages 163-187, May.
    8. Jules Sadefo-Kamdem, 2011. "Downside Risk And Kappa Index Of Non-Gaussian Portfolio With Lpm," Working Papers hal-00733043, HAL.
    9. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    10. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    11. Takafumi Kanamori & Akiko Takeda, 2012. "Worst-Case Violation of Sampled Convex Programs for Optimization with Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 171-197, January.
    12. Mainik, Georg & Mitov, Georgi & Rüschendorf, Ludger, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 115-134.
    13. Fernando Ordóñez & Nicolás E. Stier-Moses, 2010. "Wardrop Equilibria with Risk-Averse Users," Transportation Science, INFORMS, vol. 44(1), pages 63-86, February.
    14. Paul Glasserman & Wanmo Kang, 2014. "OR Forum—Design of Risk Weights," Operations Research, INFORMS, vol. 62(6), pages 1204-1220, December.
    15. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    16. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2017. "Penalizing variances for higher dependency on factors," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 479-489, April.
    17. Fonseca, Raquel J. & Rustem, Berç, 2012. "International portfolio management with affine policies," European Journal of Operational Research, Elsevier, vol. 223(1), pages 177-187.
    18. Geng Deng & Tim Dulaney & Craig McCann & Olivia Wang, 2013. "Robust portfolio optimization with Value-at-Risk-adjusted Sharpe ratios," Journal of Asset Management, Palgrave Macmillan, vol. 14(5), pages 293-305, October.
    19. Ben-Tal, A. & den Hertog, D. & De Waegenaere, A.M.B. & Melenberg, B. & Rennen, G., 2011. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Other publications TiSEM 4d43dc51-86d9-4804-8563-9, Tilburg University, School of Economics and Management.
    20. Georg Mainik & Georgi Mitov & Ludger Ruschendorf, 2015. "Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz," Papers 1505.04045, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.16106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.