IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.19717.html
   My bibliography  Save this paper

A high-order recombination algorithm for weak approximation of stochastic differential equations

Author

Listed:
  • Syoiti Ninomiya
  • Yuji Shinozaki

Abstract

This paper presents an algorithm for applying the high-order recombination method, originally introduced by Lyons and Litterer in ``High-order recombination and an application to cubature on Wiener space'' (Ann. Appl. Probab. 22(4):1301--1327, 2012), to practical problems in mathematical finance. A refined error analysis is provided, yielding a sharper condition for space partitioning. Based on this condition, a computationally feasible recursive partitioning algorithm is developed. Numerical examples are also included, demonstrating that the proposed algorithm effectively avoids the explosive growth in the cardinality of the support required to achieve high-order approximations.

Suggested Citation

  • Syoiti Ninomiya & Yuji Shinozaki, 2025. "A high-order recombination algorithm for weak approximation of stochastic differential equations," Papers 2504.19717, arXiv.org, revised May 2025.
  • Handle: RePEc:arx:papers:2504.19717
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.19717
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syoiti Ninomiya & Nicolas Victoir, 2008. "Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 107-121.
    2. Ninomiya Syoiti, 2003. "A partial sampling method applied to the Kusuoka approximation," Monte Carlo Methods and Applications, De Gruyter, vol. 9(1), pages 27-38, January.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Syoiti Ninomiya & Yuji Shinozaki, 2019. "Higher-order Discretization Methods of Forward-backward SDEs Using KLNV-scheme and Their Applications to XVA Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(3), pages 257-292, May.
    5. Mariko Ninomiya & Syoiti Ninomiya, 2009. "A new higher-order weak approximation scheme for stochastic differential equations and the Runge–Kutta method," Finance and Stochastics, Springer, vol. 13(3), pages 415-443, September.
    6. Crisan Dan & Lyons Terry, 2002. "Minimal Entropy Approximations and Optimal Algorithms," Monte Carlo Methods and Applications, De Gruyter, vol. 8(4), pages 343-356, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riu Naito & Toshihiro Yamada, 2024. "Deep high-order splitting method for semilinear degenerate PDEs and application to high-dimensional nonlinear pricing models," Digital Finance, Springer, vol. 6(4), pages 693-725, December.
    2. Aur'elien Alfonsi & Edoardo Lombardo, 2022. "High order approximations of the Cox-Ingersoll-Ross process semigroup using random grids," Papers 2209.13334, arXiv.org, revised Apr 2023.
    3. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    4. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    5. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    6. Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2010. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Papers 1006.2281, arXiv.org, revised Mar 2013.
    7. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Post-Print hal-00491371, HAL.
    8. Kazuhiro Yoshikawa, 2015. "An Approximation Scheme for Diffusion Processes Based on an Antisymmetric Calculus over Wiener Space," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(2), pages 185-207, May.
    9. Akiyama, Naho & Yamada, Toshihiro, 2024. "A weak approximation for Bismut’s formula: An algorithmic differentiation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 386-396.
    10. Denis Belomestny & Tigran Nagapetyan, 2014. "Multilevel path simulation for weak approximation schemes," Papers 1406.2581, arXiv.org, revised Oct 2014.
    11. Ofelia Bonesini & Emilio Ferrucci & Ioannis Gasteratos & Antoine Jacquier, 2024. "Rough differential equations for volatility," Papers 2412.21192, arXiv.org.
    12. Aur'elien Alfonsi & Edoardo Lombardo, 2024. "High order approximations and simulation schemes for the log-Heston process," Papers 2407.17151, arXiv.org, revised Dec 2024.
    13. Lenkšas, A. & Mackevičius, V., 2015. "Weak approximation of Heston model by discrete random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 113(C), pages 1-15.
    14. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "A Mean-Reverting SDE on Correlation matrices," Post-Print hal-00617111, HAL.
    15. Christian Bayer & Peter Friz & Ronnie Loeffen, 2010. "Semi-Closed Form Cubature and Applications to Financial Diffusion Models," Papers 1009.4818, arXiv.org.
    16. Riu Naito & Toshihiro Yamada, 2024. "Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1443-1461, September.
    17. Yusuke Morimoto & Makiko Sasada, 2015. "Algebraic Structure of Vector Fields in Financial Diffusion Models and its Applications," Papers 1510.02013, arXiv.org, revised Dec 2015.
    18. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    19. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    20. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.19717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.