IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i3d10.1007_s10614-023-10476-2.html
   My bibliography  Save this article

Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance

Author

Listed:
  • Riu Naito

    (Hitotsubashi University
    Japan Post Insurance)

  • Toshihiro Yamada

    (Hitotsubashi University
    Japan Science and Technology Agency (JST))

Abstract

The paper introduces a new deep learning-based high-order spatial approximation for a solution of a high-dimensional Kolmogorov equation where the initial condition is only assumed to be a continuous function and the condition on the vector fields associated with the differential operator is very general, i.e. weaker than Hörmander’s hypoelliptic condition. In particular, the deep learning-based method is constructed based on the Kusuoka approximation. Numerical results for high-dimensional partial differential equations up to 500-dimension cases appearing in option pricing problems show the validity of the method. As an application, a computation scheme for the delta is shown using “deep” numerical differentiation.

Suggested Citation

  • Riu Naito & Toshihiro Yamada, 2024. "Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1443-1461, September.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10476-2
    DOI: 10.1007/s10614-023-10476-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10476-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10476-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10476-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.