IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf456.html
   My bibliography  Save this paper

Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs (Forthcoming in Asia-Pacific Financial Markets)

Author

Listed:
  • Masaaki Fujii

    (Quantitative Finance Course, Graduate School of Economics, The University of Tokyo)

  • Akihiko Takahashi

    (Quantitative Finance Course, Graduate School of Economics, The University of Tokyo)

  • Masayuki Takahashi

    (Quantitative Finance Course, Graduate School of Economics, The University of Tokyo)

Abstract

We demonstrate that the use of asymptotic expansion as prior knowledge in the "deep BSDE solver", which is a deep learning method for high dimensional BSDEs proposed by Weinan E, Han & Jentzen (2017), drastically reduces the loss function and accelerates the speed of convergence. We illustrate the technique and its implications by using Bergman's model with different lending and borrowing rates as a typical model for FVA as well as a class of solvable BSDEs with quadratic growth drivers. We also present an extension of the deep BSDE solver for reflected BSDEs representing American option prices.

Suggested Citation

  • Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs (Forthcoming in Asia-Pacific Financial Markets)," CARF F-Series CARF-F-456, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf456
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/admin/wp-content/uploads/2019/03/F456.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations with quadratic-growth drivers by Connecting the Short-term Expansions," Papers 1606.04285, arXiv.org, revised May 2018.
    2. Akihiko Takahashi & Toshihiro Yamada, 2015. "An Asymptotic Expansion of Forward-Backward SDEs with a Perturbed Driver," CARF F-Series CARF-F-363, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Robust technical trading with fuzzy knowledge-based systems (Forthcoming in "Frontiers in Artificial Intelligence and Applications".)," CARF F-Series CARF-F-413, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    5. Masafumi Nakano & Akihiko Takahashi & Muhammad Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CIRJE F-Series CIRJE-F-1038, CIRJE, Faculty of Economics, University of Tokyo.
    6. Masaaki Fujii, Akihiko Takahashi, 2012. "Analytical Approximation for Non-linear FBSDEs with Perturbation Scheme," CARF F-Series CARF-F-269, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Stéphane Crépey, 2015. "Bilateral Counterparty Risk Under Funding Constraints—Part Ii: Cva," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 23-50, January.
    8. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Fuzzy Logic-based Portfolio Selection with Particle Filtering and Anomaly Detection," CIRJE F-Series CIRJE-F-1037, CIRJE, Faculty of Economics, University of Tokyo.
    9. Masaaki Fujii & Akihiko Takahashi, 2012. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," CARF F-Series CARF-F-278, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2015.
    10. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Fuzzy Logic-based Portfolio Selection with Particle Filtering and Anomaly Detection," CIRJE F-Series CIRJE-F-1037, CIRJE, Faculty of Economics, University of Tokyo.
    11. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Robust Technical Trading with Fuzzy Knowledge-based Systems," CIRJE F-Series CIRJE-F-1053, CIRJE, Faculty of Economics, University of Tokyo.
    12. Akihiko Takahashi, 2015. "Asymptotic Expansion Approach in Finance," CARF F-Series CARF-F-356, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
    13. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    14. Masafumi Nakano & Akihiko Takahashi & Soichiro Takahashi, 2017. "Creating Investment Scheme with State Space Modeling," CARF F-Series cf406, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Stéphane Crépey, 2015. "Bilateral Counterparty Risk Under Funding Constraints—Part I: Pricing," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 1-22, January.
    16. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs," CARF F-Series CARF-F-372, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    18. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs with Jumps," CIRJE F-Series CIRJE-F-993, CIRJE, Faculty of Economics, University of Tokyo.
    19. Masaaki Fujii & Akihiko Takahshi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," CIRJE F-Series CIRJE-F-954, CIRJE, Faculty of Economics, University of Tokyo.
    20. Masaaki Fujii & Akihiko Takahashi, 2011. "Analytical Approximation for Non-linear FBSDEs with Perturbation Scheme," Papers 1106.0123, arXiv.org, revised Jan 2012.
    21. Akihiko Takahashi & Toshihiro Yamada, 2015. "An asymptotic expansion of forward-backward SDEs with a perturbed driver," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-29.
    22. Masaaki Fujii & Akihiko Takahashi, 2012. "ANALYTICAL APPROXIMATION FOR NON-LINEAR FBSDEs WITH PERTURBATION SCHEME," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-24.
    23. Akihiko Takahashi & Toshiaki Watanabe, 2015. "An Asymptotic Expansion of Forward-Backward SDEs with a Perturbed Driver ," CIRJE F-Series CIRJE-F-976, CIRJE, Faculty of Economics, University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Grohs & Arnulf Jentzen & Diyora Salimova, 2022. "Deep neural network approximations for solutions of PDEs based on Monte Carlo algorithms," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-41, August.
    2. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," CARF F-Series CARF-F-504, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2022.
    3. Akihiko Takahashi & Toshihiro Yamada, 2023. "Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus," Partial Differential Equations and Applications, Springer, vol. 4(4), pages 1-31, August.
    4. Akihiko Takahashi & Toshihiro Yamada, 2021. "Asymptotic Expansion and Deep Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Kolmogorov Partial Differential Equations with Nonlinear Coefficients," CIRJE F-Series CIRJE-F-1167, CIRJE, Faculty of Economics, University of Tokyo.
    5. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2022. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver (Journal of Computational Physics, published online 19 January 2022)," CARF F-Series CARF-F-532, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Feb 2022.
    6. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," Papers 2101.09890, arXiv.org, revised Jan 2021.
    7. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," Papers 1911.11501, arXiv.org, revised Nov 2020.
    8. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    9. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    10. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    12. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A New Efficient Approximation Scheme for Solving High-Dimensional Semilinear PDEs: Control Variate Method for Deep BSDE Solver," CIRJE F-Series CIRJE-F-1159, CIRJE, Faculty of Economics, University of Tokyo.
    13. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics," CIRJE F-Series CIRJE-F-1178, CIRJE, Faculty of Economics, University of Tokyo.
    14. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-467, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    16. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance," Papers 2101.08068, arXiv.org, revised Apr 2021.
    17. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Working Papers hal-03115503, HAL.
    18. Yoshifumi Tsuchida, 2023. "Control Variate Method for Deep BSDE Solver Using Weak Approximation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 273-296, June.
    19. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    20. Jian Liang & Zhe Xu & Peter Li, 2019. "Deep Learning-Based Least Square Forward-Backward Stochastic Differential Equation Solver for High-Dimensional Derivative Pricing," Papers 1907.10578, arXiv.org, revised Oct 2020.
    21. Masaaki Fujii, 2019. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CIRJE F-Series CIRJE-F-1133, CIRJE, Faculty of Economics, University of Tokyo.
    22. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    23. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion with Weak Approximation ," CIRJE F-Series CIRJE-F-1168, CIRJE, Faculty of Economics, University of Tokyo.
    24. Yuga Iguchi & Riu Naito & Yusuke Okano & Akihiko Takahashi & Toshihiro Yamada, 2021. "Deep Asymptotic Expansion: Application to Financial Mathematics(forthcoming in proceedings of IEEE CSDE 2021)," CARF F-Series CARF-F-523, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CARF F-Series CARF-F-423, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," Papers 1710.07030, arXiv.org, revised Mar 2019.
    3. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2017. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for high dimensional BSDEs," CIRJE F-Series CIRJE-F-1069, CIRJE, Faculty of Economics, University of Tokyo.
    4. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    5. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    6. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations by Connecting the Short-term Expansions(Revised version of CARF-F-387)," CARF F-Series CARF-F-398, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs with Jumps," Papers 1510.03220, arXiv.org, revised Sep 2018.
    8. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations by Connecting the Short-term Expansions," CIRJE F-Series CIRJE-F-1016, CIRJE, Faculty of Economics, University of Tokyo.
    9. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations with quadratic-growth drivers by Connecting the Short-term Expansions," Papers 1606.04285, arXiv.org, revised May 2018.
    10. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs with Jumps," CIRJE F-Series CIRJE-F-993, CIRJE, Faculty of Economics, University of Tokyo.
    11. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations by Connecting the Short-term Expansions," CARF F-Series CARF-F-387, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    12. Stéphane Crépey & Shiqi Song, 2016. "Counterparty risk and funding: immersion and beyond," Finance and Stochastics, Springer, vol. 20(4), pages 901-930, October.
    13. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs," CARF F-Series CARF-F-372, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    14. Masaaki Fujii & Akihiko Takahashi, 2018. "Asymptotic Expansion for Forward-Backward SDEs with JumpsAsymptotic Expansion for Forward-Backward SDEs with Jumps (Forthcoming in Stochastics) (Revised version of F-372)," CARF F-Series CARF-F-445, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Stéphane Crépey & Shiqi Song, 2018. "Counterparty risk and funding: immersion and beyond," Working Papers hal-01764403, HAL.
    16. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    17. Akihiko Takahashi & Toshihiro Yamada, 2016. "An Asymptotic Expansion for Forward–Backward SDEs: A Malliavin Calculus Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 23(4), pages 337-373, December.
    18. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A New Efficient Approximation Scheme for Solving High-Dimensional Semilinear PDEs: Control Variate Method for Deep BSDE Solver," CIRJE F-Series CIRJE-F-1159, CIRJE, Faculty of Economics, University of Tokyo.
    19. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2021. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver," CARF F-Series CARF-F-504, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2022.
    20. Akihiko Takahashi & Yoshifumi Tsuchida & Toshihiro Yamada, 2022. "A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver (Journal of Computational Physics, published online 19 January 2022)," CARF F-Series CARF-F-532, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Feb 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.