IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.06351.html
   My bibliography  Save this paper

Local signature-based expansions

Author

Listed:
  • Federico M. Bandi
  • Roberto Ren`o
  • Sara Svaluto-Ferro

Abstract

We study the local (in time) expansion of a continuous-time process and its conditional moments, including the process' characteristic function. The expansions are conducted by using the properties of the (time-extended) Ito signature, a tractable basis composed of iterated integrals of the driving deterministic and stochastic signals: time, multiple correlated Brownian motions and multiple correlated compound Poisson processes. We show that these properties are conducive to automated expansions to any order with explicit coefficients and, therefore, to stochastic representations in which asymptotics can be conducted for a shrinking time (t to 0), as in the extant continuous-time econometrics literature, but, also, for a fixed time (such that t smaller than 1) with a diverging expansion order. The latter design opens up novel opportunities for identifying deep characteristics of the assumed process.

Suggested Citation

  • Federico M. Bandi & Roberto Ren`o & Sara Svaluto-Ferro, 2025. "Local signature-based expansions," Papers 2504.06351, arXiv.org.
  • Handle: RePEc:arx:papers:2504.06351
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.06351
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Todorov, Viktor, 2021. "Higher-order small time asymptotic expansion of Itô semimartingale characteristic function with application to estimation of leverage from options," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 671-705.
    2. Jos'e E. Figueroa-L'opez & Yankeng Luo & Cheng Ouyang, 2011. "Small-time expansions for local jump-diffusion models with infinite jump activity," Papers 1108.3386, arXiv.org, revised Jul 2014.
    3. Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
    4. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
    5. Eduardo Abi Jaber & Louis-Amand G'erard, 2024. "Signature volatility models: pricing and hedging with Fourier," Papers 2402.01820, arXiv.org, revised Jun 2025.
    6. Picard, Jean, 1997. "Density in small time at accessible points for jump processes," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 251-279, May.
    7. Terry Lyons & Sina Nejad & Imanol Perez Arribas, 2020. "Non-parametric Pricing and Hedging of Exotic Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(6), pages 457-494, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carsten H. Chong & Viktor Todorov, 2023. "Asymptotic Expansions for High-Frequency Option Data," Papers 2304.12450, arXiv.org, revised Feb 2025.
    2. Eduardo Abi Jaber & Donatien Hainaut & Edouard Motte, 2025. "The Volterra Stein-Stein model with stochastic interest rates," Papers 2503.01716, arXiv.org, revised Jul 2025.
    3. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    4. Friesen, Martin & Jin, Peng & Rüdiger, Barbara, 2020. "Existence of densities for multi-type continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5426-5452.
    5. Paweł Sztonyk, 2010. "Estimates of Tempered Stable Densities," Journal of Theoretical Probability, Springer, vol. 23(1), pages 127-147, March.
    6. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
    7. Jorge Gonz'alez C'azares & Aleksandar Mijatovi'c, 2020. "Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation," Papers 2011.06618, arXiv.org, revised Mar 2021.
    8. Ishikawa, Yasushi & Kunita, Hiroshi & Tsuchiya, Masaaki, 2018. "Smooth density and its short time estimate for jump process determined by SDE," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3181-3219.
    9. Christa Cuchiero & Francesca Primavera & Sara Svaluto-Ferro, 2025. "Universal approximation theorems for continuous functions of càdlàg paths and Lévy-type signature models," Finance and Stochastics, Springer, vol. 29(2), pages 289-342, April.
    10. S'ebastien Bossu & St'ephane Cr'epey & Hoang-Dung Nguyen, 2024. "Spanning Multi-Asset Payoffs With ReLUs," Papers 2403.14231, arXiv.org, revised Dec 2024.
    11. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2025.
    12. Jos'e E. Figueroa-L'opez & Yankeng Luo, 2015. "Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity," Papers 1505.04459, arXiv.org, revised Dec 2015.
    13. Fabian A. Harang & Fred Espen Benth & Fride Straum, 2024. "Universal approximation on non-geometric rough paths and applications to financial derivatives pricing," Papers 2412.16009, arXiv.org.
    14. Jingtang Ma & Xianglin Wu & Wenyuan Li, 2025. "Option pricing under non-Markovian stochastic volatility models: A deep signature approach," Papers 2508.15237, arXiv.org.
    15. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org, revised Feb 2025.
    16. Picard, Jean & Savona, Catherine, 2000. "Smoothness of harmonic functions for processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 69-91, May.
    17. Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
    18. Eduardo Abi Jaber & Louis-Amand Gérard, 2025. "Signature volatility models: pricing and hedging with Fourier," Post-Print hal-04435238, HAL.
    19. Tomoyuki Ichiba & Qijin Shi, 2025. "Unbiased Rough Integrators and No Free Lunch in Rough-Path-Based Market Models," Papers 2509.14529, arXiv.org.
    20. Figueroa-López, José E. & Luo, Yankeng, 2018. "Small-time expansions for state-dependent local jump–diffusion models with infinite jump activity," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4207-4245.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.06351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.