IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.01974.html
   My bibliography  Save this paper

Cryptocurrency Time Series on the Binary Complexity-Entropy Plane: Ranking Efficiency from the Perspective of Complex Systems

Author

Listed:
  • Erveton P. Pinto
  • Marcelo A. Pires
  • Rone N. da Silva
  • S'ilvio M. Duarte Queir'os

Abstract

We report the first application of a tailored Complexity-Entropy Plane designed for binary sequences and structures. We do so by considering the daily up/down price fluctuations of the largest cryptocurrencies in terms of capitalization (stable-coins excluded) that are worth $circa \,\, 90 \%$ of the total crypto market capitalization. With that, we focus on the basic elements of price motion that compare with the random walk backbone features associated with mathematical properties of the Efficient Market Hypothesis. From the location of each crypto on the Binary Complexity-Plane (BiCEP) we define an inefficiency score, $\mathcal I$, and rank them accordingly. The results based on the BiCEP analysis, which we substantiate with statistical testing, indicate that only Shiba Inu (SHIB) is significantly inefficient, whereas the largest stake of crypto trading is reckoned to operate in close-to-efficient conditions. Generically, our $\mathcal I$-based ranking hints the design and consensus architecture of a crypto is at least as relevant to efficiency as the features that are usually taken into account in the appraisal of the efficiency of financial instruments, namely canonical fiat money. Lastly, this set of results supports the validity of the binary complexity analysis.

Suggested Citation

  • Erveton P. Pinto & Marcelo A. Pires & Rone N. da Silva & S'ilvio M. Duarte Queir'os, 2025. "Cryptocurrency Time Series on the Binary Complexity-Entropy Plane: Ranking Efficiency from the Perspective of Complex Systems," Papers 2504.01974, arXiv.org.
  • Handle: RePEc:arx:papers:2504.01974
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.01974
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Queirós, Sílvio M. Duarte & Curado, E.M.F. & Nobre, F.D., 2007. "A multi-interacting-agent model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 715-729.
    2. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    4. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    6. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    2. Sandro Claudio Lera & Didier Sornette, 2015. "Currency target zone modeling: An interplay between physics and economics," Papers 1508.04754, arXiv.org, revised Oct 2015.
    3. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    4. Andrea Di Iura & Giulia Terenzi, 2022. "A Bayesian analysis of gain-loss asymmetry," SN Business & Economics, Springer, vol. 2(5), pages 1-23, May.
    5. Poitras, Geoffrey, 2018. "The pre-history of econophysics and the history of economics: Boltzmann versus the marginalists," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 89-98.
    6. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    7. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    8. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    9. Immonen, Eero, 2017. "Simple agent-based dynamical system models for efficient financial markets: Theory and examples," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 38-53.
    10. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.
    11. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    12. Yan Li & Bo Zheng & Ting-Ting Chen & Xiong-Fei Jiang, 2017. "Fluctuation-driven price dynamics and investment strategies," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    13. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    14. Fa-Bin Shi & Xiao-Qian Sun & Jin-Hua Gao & Li Xu & Hua-Wei Shen & Xue-Qi Cheng, 2019. "Anomaly detection in Bitcoin market via price return analysis," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-11, June.
    15. Paulo Jorge Silveira Ferreira, 2012. "Testing serial dependence in the stock markets of the G7 countries, Portugal, Spain and Greece," CEFAGE-UE Working Papers 2012_24, University of Evora, CEFAGE-UE (Portugal).
    16. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.
    17. Radu T. Pruna & Maria Polukarov & Nicholas R. Jennings, 2016. "A new structural stochastic volatility model of asset pricing and its stylized facts," Papers 1604.08824, arXiv.org.
    18. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    19. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    20. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    21. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    22. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.01974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.