IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.19213.html
   My bibliography  Save this paper

Framework for asset-liability management with fixed-term securities

Author

Listed:
  • Yevhen Havrylenko

Abstract

We consider an optimal investment-consumption problem for a utility-maximizing investor who has access to assets with different liquidity and whose consumption rate as well as terminal wealth are subject to lower-bound constraints. Assuming utility functions that satisfy standard conditions, we develop a methodology for deriving the optimal strategies in semi-closed form. Our methodology is based on the generalized martingale approach and the decomposition of the problem into subproblems. We illustrate our approach by deriving explicit formulas for agents with power-utility functions and discuss potential extensions of the proposed framework.

Suggested Citation

  • Yevhen Havrylenko, 2025. "Framework for asset-liability management with fixed-term securities," Papers 2502.19213, arXiv.org.
  • Handle: RePEc:arx:papers:2502.19213
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.19213
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    2. Maxim Bichuch & Paolo Guasoni, 2018. "Investing With Liquid And Illiquid Assets," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 119-152, January.
    3. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    4. Hansjoerg Albrecher & Daniel Bauer & Paul Embrechts & Damir Filipović & Pablo Koch-Medina & Ralf Korn & Stéphane Loisel & Antoon Pelsser & Frank Schiller & Hato Schmeiser & Joël Wagner, 2017. "Asset-Liability Management for Long-Term Insurance Business," Swiss Finance Institute Research Paper Series 17-69, Swiss Finance Institute, revised Jan 2018.
    5. Desmettre, Sascha & Seifried, Frank Thomas, 2016. "Optimal asset allocation with fixed-term securities," Journal of Economic Dynamics and Control, Elsevier, vol. 66(C), pages 1-19.
    6. Tepla, Lucie, 2001. "Optimal investment with minimum performance constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1629-1645, October.
    7. Munk, Claus, 2000. "Optimal consumption/investment policies with undiversifiable income risk and liquidity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(9), pages 1315-1343, August.
    8. An Chen & Thai Nguyen & Mitja Stadje, 2018. "Risk management with multiple VaR constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 297-337, October.
    9. Phelim Boyle & Weidong Tian, 2007. "Portfolio Management With Constraints," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 319-343, July.
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. Chen, Zheng & Li, Zhongfei & Zeng, Yan, 2023. "Portfolio choice with illiquid asset for a loss-averse pension fund investor," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 60-83.
    12. Christoph Belak & Sören Christensen, 2019. "Utility maximisation in a factor model with constant and proportional transaction costs," Finance and Stochastics, Springer, vol. 23(1), pages 29-96, January.
    13. Peter Lakner & Lan Ma Nygren, 2006. "Portfolio Optimization With Downside Constraints," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 283-299, April.
    14. Ralf Korn, 2005. "Optimal portfolios with a positive lower bound on final wealth," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 315-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    2. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    3. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    4. Chufang Wu & Jia-Wen Gu & Wai-Ki Ching & Chi-Wing Wong, 2024. "Precommitted Strategies with Initial-Time and Intermediate-Time Value-at-Risk Constraints," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 880-919, October.
    5. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    6. Kraft, Holger & Steffensen, Mogens, 2012. "A dynamic programming approach to constrained portfolios," CFS Working Paper Series 2012/07, Center for Financial Studies (CFS).
    7. Boyle, Phelim & Tian, Weidong, 2008. "The design of equity-indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 303-315, December.
    8. John Armstrong & Damiano Brigo & Alex S. L. Tse, 2024. "The importance of dynamic risk constraints for limited liability operators," Annals of Operations Research, Springer, vol. 336(1), pages 861-898, May.
    9. Andreas Lichtenstern & Pavel V. Shevchenko & Rudi Zagst, 2019. "Optimal life-cycle consumption and investment decisions under age-dependent risk preferences," Papers 1908.09976, arXiv.org.
    10. Morten Tolver Kronborg, 2014. "Optimal Consumption and Investment with Labor Income and European/American Capital Guarantee," Risks, MDPI, vol. 2(2), pages 1-24, May.
    11. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    12. Marcos Escobar-Anel, 2022. "A dynamic programming approach to path-dependent constrained portfolios," Annals of Operations Research, Springer, vol. 315(1), pages 141-157, August.
    13. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    14. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.
    15. Li, Zhongfei & Yao, Jing & Li, Duan, 2010. "Behavior patterns of investment strategies under Roy's safety-first principle," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 167-179, May.
    16. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    17. Steffensen, Mogens, 2011. "Optimal consumption and investment under time-varying relative risk aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 659-667, May.
    18. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    19. Suleyman Basak & Alex Shapiro & Lucie Teplá, 2006. "Risk Management with Benchmarking," Management Science, INFORMS, vol. 52(4), pages 542-557, April.
    20. Escobar-Anel, Marcos & Havrylenko, Yevhen & Kschonnek, Michel & Zagst, Rudi, 2022. "Decrease of capital guarantees in life insurance products: Can reinsurance stop it?," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 14-40.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.19213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.