IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.13824.html
   My bibliography  Save this paper

Calibration and Option Pricing with Stochastic Volatility and Double Exponential Jumps

Author

Listed:
  • Gaetano Agazzotti
  • Claudio Aglieri Rinella
  • Jean-Philippe Aguilar
  • Justin Lars Kirkby

Abstract

This work examines a stochastic volatility model with double-exponential jumps in the context of option pricing. The model has been considered in previous research articles, but no thorough analysis has been conducted to study its quality of calibration and pricing capabilities thus far. We provide evidence that this model outperforms challenger models possessing similar features (stochastic volatility and jumps), especially in the fit of the short term implied volatility smile, and that it is particularly tractable for the pricing of exotic options from different generations. The article utilizes Fourier pricing techniques (the PROJ method and its refinements) for different types of claims and several generations of exotics (Asian options, cliquets, barrier options, and options on realized variance), and all source codes are made publicly available to facilitate adoption and future research. The results indicate that this model is highly promising, thanks to the asymmetry of the jumps distribution allowing it to capture richer dynamics than a normal jump size distribution. The parameters all have meaningful econometrics interpretations that are important for adoption by risk-managers.

Suggested Citation

  • Gaetano Agazzotti & Claudio Aglieri Rinella & Jean-Philippe Aguilar & Justin Lars Kirkby, 2025. "Calibration and Option Pricing with Stochastic Volatility and Double Exponential Jumps," Papers 2502.13824, arXiv.org.
  • Handle: RePEc:arx:papers:2502.13824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.13824
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    2. Wei Zhong & Dan Zhu & Zhimin Zhang, 2023. "Valuation of variable annuities under stochastic volatility and stochastic jump intensity," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(7), pages 708-734, August.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    6. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    7. J. Lars Kirkby, 2017. "Robust barrier option pricing by frame projection under exponential Lévy dynamics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(4), pages 337-386, July.
    8. Jacinto Marabel Romo, 2014. "Pricing Forward Skew Dependent Derivatives. Multifactor Versus Single‐Factor Stochastic Volatility Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(2), pages 124-144, February.
    9. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
    10. Meiqiao Ai & Zhimin Zhang & Dan Zhu, 2023. "Valuing variable annuities with path-dependent surrender guarantees under regime-switching Lévy models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(4), pages 330-358, April.
    11. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    12. Gerald H. L. Cheang & Len Patrick Dominic M. Garces, 2020. "Representation of Exchange Option Prices under Stochastic Volatility Jump-Diffusion Dynamics," Papers 2002.10202, arXiv.org.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Peter Carr & John Crosby, 2010. "A class of Levy process models with almost exact calibration to both barrier and vanilla FX options," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1115-1136.
    15. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    16. Zhiqiang Zhou & Wei Xu & Alexey Rubtsov, 2024. "Joint calibration of S&P 500 and VIX options under local stochastic volatility models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 273-310, January.
    17. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    18. Masaaki Fukasawa, 2021. "Volatility has to be rough," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 1-8, January.
    19. Paul Gassiat, 2022. "Weak error rates of numerical schemes for rough volatility," Papers 2203.09298, arXiv.org, revised Feb 2023.
    20. Leonardo Perotti & Lech A. Grzelak, 2022. "On Pricing of Discrete Asian and Lookback Options under the Heston Model," Papers 2211.03638, arXiv.org, revised Feb 2024.
    21. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    22. J. Lars Kirkby & Jean-Philippe Aguilar, 2023. "Valuation and optimal surrender of variable annuities with guaranteed minimum benefits and periodic fees," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(6), pages 624-654, July.
    23. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    24. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    25. Anthonie W. Van Der Stoep & Lech A. Grzelak & Cornelis W. Oosterlee, 2020. "Collocating Volatility: A Competitive Alternative To Stochastic Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-42, September.
    26. Antoine Jacquier & Mugad Oumgari, 2019. "Deep Curve-dependent PDEs for affine rough volatility," Papers 1906.02551, arXiv.org, revised Jan 2023.
    27. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    28. Gerald H. L. Cheang & Len Patrick Dominic M. Garces, 2020. "Representation of exchange option prices under stochastic volatility jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 291-310, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    2. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    3. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics," Papers 2106.07362, arXiv.org.
    4. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    5. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    6. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    7. Svetlana Boyarchenko & Sergei Levendorskiä¬ & J. Lars Kyrkby & Zhenyu Cui, 2021. "Sinh-Acceleration For B-Spline Projection With Option Pricing Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(08), pages 1-50, December.
    8. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2020. "A Put-Call Transformation of the Exchange Option Problem under Stochastic Volatility and Jump Diffusion Dynamics," Papers 2002.10194, arXiv.org.
    9. Wu, Bin & Chen, Pengzhan & Ye, Wuyi, 2024. "Variance swaps with mean reversion and multi-factor variance," European Journal of Operational Research, Elsevier, vol. 315(1), pages 191-212.
    10. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    11. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    12. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    13. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    14. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    15. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    16. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    17. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    18. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Comparative Study of Two Extensions of Heston Stochastic Volatility Model," Papers 1912.10237, arXiv.org.
    19. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    20. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.13824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.