IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.10194.html
   My bibliography  Save this paper

A Put-Call Transformation of the Exchange Option Problem under Stochastic Volatility and Jump Diffusion Dynamics

Author

Listed:
  • Len Patrick Dominic M. Garces
  • Gerald H. L. Cheang

Abstract

We price European and American exchange options where the underlying asset prices are modelled using a Merton (1976) jump-diffusion with a common Heston (1993) stochastic volatility process. Pricing is performed under an equivalent martingale measure obtained by setting the second asset yield process as the numeraire asset, as suggested by Bjerskund and Stensland (1993). Such a choice for the numeraire reduces the exchange option pricing problem, a two-dimensional problem, to pricing a call option written on the ratio of the yield processes of the two assets, a one-dimensional problem. The joint transition density function of the asset yield ratio process and the instantaneous variance process is then determined from the corresponding Kolmogorov backward equation via integral transforms. We then determine integral representations for the European exchange option price and the early exercise premium and state a linked system of integral equations that characterizes the American exchange option price and the associated early exercise boundary. Properties of the early exercise boundary near maturity are also discussed.

Suggested Citation

  • Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2020. "A Put-Call Transformation of the Exchange Option Problem under Stochastic Volatility and Jump Diffusion Dynamics," Papers 2002.10194, arXiv.org.
  • Handle: RePEc:arx:papers:2002.10194
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.10194
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    2. François M. Quittard-Pinon & Rivo Randrianarivony, 2010. "Exchange Options when One Underlying Price Can Jump," Finance, Presses universitaires de Grenoble, vol. 31(1), pages 33-53.
    3. François Quittard-Pinon & Rivo Randrianarivony, 2010. "Exchange options when one underlying price can jump," Post-Print hal-02312508, HAL.
    4. Chandrasekhar Reddy Gukhal, 2001. "Analytical Valuation of American Options on Jump‐Diffusion Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 97-115, January.
    5. F. Antonelli & A. Ramponi & S. Scarlatti, 2010. "Exchange option pricing under stochastic volatility: a correlation expansion," Review of Derivatives Research, Springer, vol. 13(1), pages 45-73, April.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Thomas Adolfsson & Carl Chiarella & Andrew Ziogas & Jonathan Ziveyi, 2013. "Representation and Numerical Approximation of American Option Prices under Heston Stochastic Volatility Dynamics," Research Paper Series 327, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Carl Chiarella & Jonathan Ziveyi, 2014. "Pricing American options written on two underlying assets," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 409-426, March.
    9. Gerald H. L. Cheang & Len Patrick Dominic M. Garces, 2020. "Representation of Exchange Option Prices under Stochastic Volatility Jump-Diffusion Dynamics," Papers 2002.10202, arXiv.org.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Shephard, N.G., 1991. "From Characteristic Function to Distribution Function: A Simple Framework for the Theory," Econometric Theory, Cambridge University Press, vol. 7(4), pages 519-529, December.
    12. Gerald H. L. Cheang & Carl Chiarella & Andrew Ziogas, 2013. "The representation of American options prices under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 241-253, January.
    13. Roberto Dieci & Xue-Zhong He & Cars Hommes (ed.), 2014. "Nonlinear Economic Dynamics and Financial Modelling," Springer Books, Springer, edition 127, number 978-3-319-07470-2, December.
    14. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    15. Fischer, Stanley, 1978. "Call Option Pricing when the Exercise Price Is Uncertain, and the Valuation of Index Bonds," Journal of Finance, American Finance Association, vol. 33(1), pages 169-176, March.
    16. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    17. François Quittard-Pinon & Rivo Randrianarivony, 2010. "Exchange Options when One Underlying Price Can Jump," Post-Print hal-02358444, HAL.
    18. Gerald H. L. Cheang & Len Patrick Dominic M. Garces, 2020. "Representation of exchange option prices under stochastic volatility jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 291-310, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics," Papers 2106.07362, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics," Papers 2106.07362, arXiv.org.
    2. Gerald H. L. Cheang & Len Patrick Dominic M. Garces, 2020. "Representation of Exchange Option Prices under Stochastic Volatility Jump-Diffusion Dynamics," Papers 2002.10202, arXiv.org.
    3. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2025-2054, December.
    4. Pasricha, Puneet & He, Xin-Jiang, 2022. "Skew-Brownian motion and pricing European exchange options," International Review of Financial Analysis, Elsevier, vol. 82(C).
    5. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    6. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl & Hongang Yang, 2016. "Pricing American Options under Regime Switching Using Method of Lines," Research Paper Series 368, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Zhylyevskyy, Oleksandr, 2012. "Joint Characteristic Function of Stock Log-Price and Squared Volatility in the Bates Model and Its Asset Pricing Applications," Staff General Research Papers Archive 35559, Iowa State University, Department of Economics.
    8. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    9. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019, January-A.
    11. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    12. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    14. Boda Kang & Christina Nikitopoulos Sklibosios & Erik Schlogl & Blessing Taruvinga, 2019. "The Impact of Jumps on American Option Pricing: The S&P 100 Options Case," Research Paper Series 397, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    16. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    17. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    18. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    19. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.10194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.