From Votes to Volatility Predicting the Stock Market on Election Day
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Thanh Trung Huynh & Minh Hieu Nguyen & Thanh Tam Nguyen & Phi Le Nguyen & Matthias Weidlich & Quoc Viet Hung Nguyen & Karl Aberer, 2022. "Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction," Papers 2211.07400, arXiv.org, revised Nov 2022.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- André F. Perold, 2004. "The Capital Asset Pricing Model," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 3-24, Summer.
- Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Otranto, Edoardo, 2010.
"Identifying financial time series with similar dynamic conditional correlation,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
- E. Otranto, 2008. "Identifying Financial Time Series with Similar Dynamic Conditional Correlation," Working Paper CRENoS 200817, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Jingyi Wei & Steve Yang & Zhenyu Cui, 2025. "Integrated GARCH-GRU in Financial Volatility Forecasting," Papers 2504.09380, arXiv.org.
- Andrew Stuart Duncan & Guangling“dave” Liu, 2009. "Modelling South African Currency Crises As Structural Changes In The Volatility Of The Rand," South African Journal of Economics, Economic Society of South Africa, vol. 77(3), pages 363-379, September.
- E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024.
"Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series,"
Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
- Frédy Valé Manuel Pokou & Jules Sadefo Kamdem & François Benhmad, 2023. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Post-Print hal-04312314, HAL.
- Ao Yang & Qing Ye & Jia Zhai, 2024. "Volatility forecasting with Hybrid‐long short‐term memory models: Evidence from the COVID‐19 period," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2766-2786, July.
- João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Roy Cerqueti & Mario Maggi & Jessica Riccioni, 2024. "Statistical methods for decision support systems in finance: how Benford’s law predicts financial risk," Annals of Operations Research, Springer, vol. 342(3), pages 1445-1469, November.
- Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
- Jakub Micha'nk'ow & {L}ukasz Kwiatkowski & Janusz Morajda, 2023. "Combining Deep Learning and GARCH Models for Financial Volatility and Risk Forecasting," Papers 2310.01063, arXiv.org.
- Gupta, Abhijit, 2025. "Decoding Futures Price Dynamics: A Regularized Sparse Autoencoder for Interpretable Multi-Horizon Forecasting and Factor Discovery," OSF Preprints 4rzky_v1, Center for Open Science.
- Edoardo Otranto, 2004. "Classifying the Markets Volatility with ARMA Distance Measures," Econometrics 0402009, University Library of Munich, Germany, revised 05 Mar 2004.
- Otranto, Edoardo, 2008.
"Clustering heteroskedastic time series by model-based procedures,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
- E. Otranto, 2008. "Clustering Heteroskedastic Time Series by Model-Based Procedures," Working Paper CRENoS 200801, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
- Weiguo Zhang & Xue Gong & Chao Wang & Xin Ye, 2021. "Predicting stock market volatility based on textual sentiment: A nonlinear analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1479-1500, December.
- Zhang, Yongjie & Chu, Gang & Shen, Dehua, 2021. "The role of investor attention in predicting stock prices: The long short-term memory networks perspective," Finance Research Letters, Elsevier, vol. 38(C).
- Raffaele Mattera & Philipp Otto, 2023. "Network log-ARCH models for forecasting stock market volatility," Papers 2303.11064, arXiv.org.
- Sauraj Verma, 2021. "Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 130-142, April.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-01-27 (Big Data)
- NEP-CMP-2025-01-27 (Computational Economics)
- NEP-POL-2025-01-27 (Positive Political Economics)
- NEP-RMG-2025-01-27 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.11192. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.