IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.02634.html
   My bibliography  Save this paper

CLVR Ordering of Transactions on AMMs

Author

Listed:
  • Robert McLaughlin
  • Nir Chemaya
  • Dingyue Liu
  • Dahlia Malkhi

Abstract

This paper introduces a trade ordering rule that aims to reduce intra-block price volatility in Automated Market Maker (AMM) powered decentralized exchanges. The ordering rule introduced here, Clever Look-ahead Volatility Reduction (CLVR), operates under the (common) framework in decentralized finance that allows some entities to observe trade requests before they are settled, assemble them into "blocks", and order them as they like. On AMM exchanges, asset prices are continuously and transparently updated as a result of each trade and therefore, transaction order has high financial value. CLVR aims to order transactions for traders' benefit. Our primary focus is intra-block price stability (minimizing volatility), which has two main benefits for traders: it reduces transaction failure rate and allows traders to receive closer prices to the reference price at which they submit their transactions accordingly. We show that CLVR constructs an ordering which approximately minimizes price volatility with a small computation cost and can be trivially verified externally.

Suggested Citation

  • Robert McLaughlin & Nir Chemaya & Dingyue Liu & Dahlia Malkhi, 2024. "CLVR Ordering of Transactions on AMMs," Papers 2408.02634, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2408.02634
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.02634
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Budish & Robin S. Lee & John J. Shim, 2024. "A Theory of Stock Exchange Competition and Innovation: Will the Market Fix the Market?," Journal of Political Economy, University of Chicago Press, vol. 132(4), pages 1209-1246.
    2. Eric Budish & Peter Cramton & John Shim, 2014. "Implementation Details for Frequent Batch Auctions: Slowing Down Markets to the Blink of an Eye," American Economic Review, American Economic Association, vol. 104(5), pages 418-424, May.
    3. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Marner-Hausen, 2022. "Developing a Framework for Real-Time Trading in a Laboratory Financial Market," ECONtribute Discussion Papers Series 172, University of Bonn and University of Cologne, Germany.
    2. David Rushing Dewhurst & Michael Vincent Arnold & Colin Michael Van Oort, 2018. "Selection mechanisms affect volatility in evolving markets," Papers 1812.05657, arXiv.org, revised Apr 2019.
    3. Frank Kelly & Elena Yudovina, 2018. "A Markov Model of a Limit Order Book: Thresholds, Recurrence, and Trading Strategies," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 181-203, February.
    4. Daniel Chen & Darrell Duffie, 2021. "Market Fragmentation," American Economic Review, American Economic Association, vol. 111(7), pages 2247-2274, July.
    5. Franzoni, Francesco & Di Maggio, Marco & Egan, Mark, 2019. "The Value of Intermediation in the Stock Market," CEPR Discussion Papers 13936, C.E.P.R. Discussion Papers.
    6. Alangi, Somayeh Rahimi & Bjørndal, Endre & Bjørndal, Mette, 2022. "Can the European intraday market be designed as a congestion management tool?," Energy Economics, Elsevier, vol. 113(C).
    7. Vasilios Mavroudis & Hayden Melton, 2019. "Libra: Fair Order-Matching for Electronic Financial Exchanges," Papers 1910.00321, arXiv.org.
    8. Notheisen, Benedikt & Marino, Vincenzo & Englert, Daniel & Weinhardt, Christof, 2019. "Trading stocks on blocks: The quality of decentralized markets," Working Paper Series in Economics 129, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    9. Eric M. Aldrich & Kristian López Vargas, 2020. "Experiments in high-frequency trading: comparing two market institutions," Experimental Economics, Springer;Economic Science Association, vol. 23(2), pages 322-352, June.
    10. Yan Chen & Peter Cramton & John A. List & Axel Ockenfels, 2021. "Market Design, Human Behavior, and Management," Management Science, INFORMS, vol. 67(9), pages 5317-5348, September.
    11. Vasilios Mavroudis, 2019. "Market Manipulation as a Security Problem," Papers 1903.12458, arXiv.org.
    12. Markus Baldauf & Joshua Mollner, 2020. "High‐Frequency Trading and Market Performance," Journal of Finance, American Finance Association, vol. 75(3), pages 1495-1526, June.
    13. Suchismita Mishra & Le Zhao, 2021. "Order Routing Decisions for a Fragmented Market: A Review," JRFM, MDPI, vol. 14(11), pages 1-32, November.
    14. Michael Brolley & Marius Zoican, 2019. "Liquid Speed: On-Demand Fast Trading at Distributed Exchanges," Papers 1907.10720, arXiv.org.
    15. Andrea Attar & Thomas Mariotti & François Salanié, 2021. "Entry-Proofness and Discriminatory Pricing under Adverse Selection," American Economic Review, American Economic Association, vol. 111(8), pages 2623-2659, August.
    16. Jason Allen & Milena Wittwer, 2023. "Centralizing Over-the-Counter Markets?," Journal of Political Economy, University of Chicago Press, vol. 131(12), pages 3310-3351.
    17. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    18. Bellia, Mario & Christensen, Kim & Kolokolov, Aleksey & Pelizzon, Loriana & Renò, Roberto, 2022. "Do designated market makers provide liquidity during a flash crash?," SAFE Working Paper Series 270, Leibniz Institute for Financial Research SAFE, revised 2022.
    19. Parag A. Pathak & Alex Rees-Jones & Tayfun Sönmez, 2025. "Immigration Lottery Design: Engineered and Coincidental Consequences of H-1B Reforms," The Review of Economics and Statistics, MIT Press, vol. 107(1), pages 1-13, January.
    20. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.02634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.