IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.17919.html
   My bibliography  Save this paper

Quanto Option Pricing on a Multivariate Levy Process Model with a Generative Artificial Intelligence

Author

Listed:
  • Young Shin Kim
  • Hyun-Gyoon Kim

Abstract

In this study, we discuss a machine learning technique to price exotic options with two underlying assets based on a non-Gaussian Levy process model. We introduce a new multivariate Levy process model named the generalized normal tempered stable (gNTS) process, which is defined by time-changed multivariate Brownian motion. Since the gNTS process does not provide a simple analytic formula for the probability density function (PDF), we use the conditional real-valued non-volume preserving (CRealNVP) model, which is a type of flow-based generative network. Then, we discuss the no-arbitrage pricing on the gNTS model for pricing the quanto option, whose underlying assets consist of a foreign index and foreign exchange rate. We present the training of the CRealNVP model to learn the PDF of the gNTS process using a training set generated by Monte Carlo simulation. Next, we estimate the parameters of the gNTS model with the trained CRealNVP model using the empirical data observed in the market. Finally, we provide a method to find an equivalent martingale measure on the gNTS model and to price the quanto option using the CRealNVP model with the risk-neutral parameters of the gNTS model.

Suggested Citation

  • Young Shin Kim & Hyun-Gyoon Kim, 2024. "Quanto Option Pricing on a Multivariate Levy Process Model with a Generative Artificial Intelligence," Papers 2402.17919, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2402.17919
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.17919
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Young Kim & Jeong Lee, 2007. "The relative entropy in CGMY processes and its applications to finance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 327-338, October.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    3. Naaman, Michael, 2021. "On the tight constant in the multivariate Dvoretzky–Kiefer–Wolfowitz inequality," Statistics & Probability Letters, Elsevier, vol. 173(C).
    4. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    5. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    6. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    2. Sung Ik Kim & Young Shin Kim, 2018. "Tempered stable structural model in pricing credit spread and credit default swap," Review of Derivatives Research, Springer, vol. 21(1), pages 119-148, April.
    3. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.
    4. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.
    5. Young Shin Kim, 2019. "Tempered stable process, first passage time, and path-dependent option pricing," Computational Management Science, Springer, vol. 16(1), pages 187-215, February.
    6. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    7. Lin, Lisha & Li, Yaqiong & Gao, Rui & Wu, Jianhong, 2021. "The numerical simulation of Quanto option prices using Bayesian statistical methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    8. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Fabozzi, Frank J., 2008. "Financial market models with Lévy processes and time-varying volatility," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1363-1378, July.
    9. Leiss, Matthias & Nax, Heinrich H., 2018. "Option-implied objective measures of market risk," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 241-249.
    10. Kurosaki, Tetsuo & Kim, Young Shin, 2022. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Finance Research Letters, Elsevier, vol. 45(C).
    11. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    12. Young Kim & Frank Fabozzi & Zuodong Lin & Svetlozar Rachev, 2012. "Option pricing and hedging under a stochastic volatility Lévy process model," Review of Derivatives Research, Springer, vol. 15(1), pages 81-97, April.
    13. Kim, Sung Ik, 2023. "A comparative study of firm value models: Default risk of corporate bonds," Finance Research Letters, Elsevier, vol. 56(C).
    14. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    15. Lisha Lin & Yaqiong Li & Rui Gao & Jianhong Wu, 2019. "The Numerical Simulation of Quanto Option Prices Using Bayesian Statistical Methods," Papers 1910.04075, arXiv.org.
    16. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    17. Abdou Kélani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market: A Risk Management Perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 209-238, March.
    18. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    19. Yuval Heller & Amnon Schreiber, 2020. "Short-Term Investments and Indices of Risk," Papers 2005.06576, arXiv.org.
    20. Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.17919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.