IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v45y2022ics1544612321002245.html
   My bibliography  Save this article

Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk

Author

Listed:
  • Kurosaki, Tetsuo
  • Kim, Young Shin

Abstract

We study portfolio optimization of four major cryptocurrencies. Our time series model is a generalized autoregressive conditional heteroscedasticity (GARCH) model with multivariate normal tempered stable (MNTS) distributed residuals used to capture the non-Gaussian cryptocurrency return dynamics. Based on the time series model, we optimize the portfolio in terms of Foster-Hart risk. Those sophisticated techniques are not yet documented in the context of cryptocurrency. Statistical tests suggest that the MNTS distributed GARCH model fits better with cryptocurrency returns than the competing GARCH-type models. We find that Foster-Hart optimization yields a more profitable portfolio with better risk-return balance than the prevailing approach.

Suggested Citation

  • Kurosaki, Tetsuo & Kim, Young Shin, 2022. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Finance Research Letters, Elsevier, vol. 45(C).
  • Handle: RePEc:eee:finlet:v:45:y:2022:i:c:s1544612321002245
    DOI: 10.1016/j.frl.2021.102143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612321002245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2021.102143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    2. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    3. Dean P. Foster & Sergiu Hart, 2009. "An Operational Measure of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 117(5), pages 785-814.
    4. Brauneis, Alexander & Mestel, Roland, 2019. "Cryptocurrency-portfolios in a mean-variance framework," Finance Research Letters, Elsevier, vol. 28(C), pages 259-264.
    5. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    6. Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
    7. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    8. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    9. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    10. Shao, Barret Pengyuan & Rachev, Svetlozar T. & Mu, Yu, 2015. "Applied mean-ETL optimization in using earnings forecasts," International Journal of Forecasting, Elsevier, vol. 31(2), pages 561-567.
    11. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    12. Leiss, Matthias & Nax, Heinrich H., 2018. "Option-implied objective measures of market risk," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 241-249.
    13. Michele Leonardo Bianchi & Gian Luca Tassinari, 2020. "Forward-looking portfolio selection with multivariate non-Gaussian models," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1645-1661, October.
    14. Liu, Weiyi, 2019. "Portfolio diversification across cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 200-205.
    15. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    16. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Ruixue & Rocha, Luis E.C., 2023. "A network-based strategy of price correlations for optimal cryptocurrency portfolios," Finance Research Letters, Elsevier, vol. 58(PC).
    2. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.
    3. Tong Liu & Yanlin Shi, 2022. "Innovation of the Component GARCH Model: Simulation Evidence and Application on the Chinese Stock Market," Mathematics, MDPI, vol. 10(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tetsuo Kurosaki & Young Shin Kim, 2020. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Papers 2010.08900, arXiv.org.
    2. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    3. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    4. Fung, Kennard & Jeong, Jiin & Pereira, Javier, 2022. "More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
    5. Kim, Sung Ik, 2023. "A comparative study of firm value models: Default risk of corporate bonds," Finance Research Letters, Elsevier, vol. 56(C).
    6. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    7. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    8. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    9. Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.
    10. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.
    11. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    12. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    13. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.
    14. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    15. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    16. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
    17. Hasan A. Fallahgoul & David Veredas & Frank J. Fabozzi, 2019. "Quantile-Based Inference for Tempered Stable Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 51-83, January.
    18. Yuval Heller & Amnon Schreiber, 2020. "Short-Term Investments and Indices of Risk," Papers 2005.06576, arXiv.org.
    19. Bianchi, Michele Leonardo & De Luca, Giovanni & Rivieccio, Giorgia, 2023. "Non-Gaussian models for CoVaR estimation," International Journal of Forecasting, Elsevier, vol. 39(1), pages 391-404.
    20. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.

    More about this item

    Keywords

    Cryptocurrencies; Foster-Hart risk; GARCH modeling; Multivariate normal tempered stable process; Portfolio optimization; Value at risk;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:45:y:2022:i:c:s1544612321002245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.