IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.08094.html
   My bibliography  Save this paper

Optimal Insurance to Maximize Exponential Utility when Premium is Computed by a Convex Functional

Author

Listed:
  • Jingyi Cao
  • Dongchen Li
  • Virginia R. Young
  • Bin Zou

Abstract

We find the optimal indemnity to maximize the expected utility of terminal wealth of a buyer of insurance whose preferences are modeled by an exponential utility. The insurance premium is computed by a convex functional. We obtain a necessary condition for the optimal indemnity; then, because the candidate optimal indemnity is given implicitly, we use that necessary condition to develop a numerical algorithm to compute it. We prove that the numerical algorithm converges to a unique indemnity that, indeed, equals the optimal policy. We also illustrate our results with numerical examples.

Suggested Citation

  • Jingyi Cao & Dongchen Li & Virginia R. Young & Bin Zou, 2024. "Optimal Insurance to Maximize Exponential Utility when Premium is Computed by a Convex Functional," Papers 2401.08094, arXiv.org.
  • Handle: RePEc:arx:papers:2401.08094
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.08094
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    2. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    3. Kaluszka, Marek, 2005. "Optimal reinsurance under convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 375-398, June.
    4. Xiaoqing Liang & Ruodu Wang & Virginia Young, 2021. "Optimal Insurance to Maximize RDEU Under a Distortion-Deviation Premium Principle," Papers 2107.02656, arXiv.org, revised Feb 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    2. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    3. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    4. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    5. Centeno, M.L. & Guerra, M., 2010. "The optimal reinsurance strategy -- the individual claim case," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 450-460, June.
    6. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.
    7. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "The optimal insurance under disappointment theories," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 77-90.
    8. Zhu, Yunzhou & Zhang, Lixin & Zhang, Yi, 2013. "Optimal reinsurance under the Haezendonck risk measure," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1111-1116.
    9. Liang, Xiaoqing & Jiang, Wenjun & Zhang, Yiying, 2023. "Optimal insurance design under mean-variance preference with narrow framing," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 59-79.
    10. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    11. Sung, K.C.J. & Yam, S.C.P. & Yung, S.P. & Zhou, J.H., 2011. "Behavioral optimal insurance," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 418-428.
    12. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2010. "Stability of the optimal reinsurance with respect to the risk measure," DEE - Working Papers. Business Economics. WB wb100201, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    13. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    14. Boonen, Tim J. & Jiang, Wenjun, 2022. "Bilateral risk sharing in a comonotone market with rank-dependent utilities," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 361-378.
    15. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.
    16. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    17. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    18. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    19. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
    20. Lisa L. Posey & Vickie Bajtelsmit, 2017. "Insurance and Endogenous Bankruptcy Risk: When is it Rational to Choose Gambling, Insurance, and Potential Bankruptcy?," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 42(1), pages 15-40, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.08094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.