IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.17270.html
   My bibliography  Save this paper

Exponential Utility Maximization in a Continuous Time Gaussian Framework

Author

Listed:
  • Yan Dolinsky

Abstract

In this work we study the continuous time exponential utility maximization problem in the framework of an investor who is informed about the price changes with a delay. This leads to a non-Markovian stochastic control problem. In the case where the risky asset is given by a Gaussian process (with some additional properties) we establish a solution for the optimal control and the corresponding value. Our approach is purely probabilistic and is based on the theory for Radon-Nikodym derivatives of Gaussian measures developed by Shepp \cite{S:66}, Hitsuda \cite{H:68} and received a new and unifying angle in [2].

Suggested Citation

  • Yan Dolinsky, 2023. "Exponential Utility Maximization in a Continuous Time Gaussian Framework," Papers 2311.17270, arXiv.org, revised May 2025.
  • Handle: RePEc:arx:papers:2311.17270
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.17270
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    2. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    3. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    4. Álvaro Cartea & Leandro Sánchez-Betancourt, 2023. "Optimal execution with stochastic delay," Finance and Stochastics, Springer, vol. 27(1), pages 1-47, January.
    5. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    6. Peter Bank & Yan Dolinsky, 2020. "A Note on Utility Indifference Pricing with Delayed Information," Papers 2011.05023, arXiv.org, revised Mar 2021.
    7. Yan Dolinsky & Or Zuk, 2023. "Explicit Computations for Delayed Semistatic Hedging," Papers 2308.10550, arXiv.org, revised Sep 2024.
    8. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    9. Rüdiger Frey, 2000. "Risk Minimization with Incomplete Information in a Model for High‐Frequency Data," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 215-225, April.
    10. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Dolinsky & Or Zuk, 2023. "Explicit Computations for Delayed Semistatic Hedging," Papers 2308.10550, arXiv.org, revised Sep 2024.
    2. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    3. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    4. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    5. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    6. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    7. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    8. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    9. Sebastian Herrmann & Florian Stebegg, 2017. "Robust Pricing and Hedging around the Globe," Papers 1707.08545, arXiv.org, revised Apr 2019.
    10. Arash Fahim & Yu-Jui Huang & Saeed Khalili, 2019. "Generalized Duality for Model-Free Superhedging given Marginals," Papers 1909.06036, arXiv.org, revised Sep 2019.
    11. Ariel Neufeld, 2018. "Buy-And-Hold Property For Fully Incomplete Markets When Super-Replicating Markovian Claims," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-12, December.
    12. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    13. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    14. Ariel Neufeld, 2017. "Buy-and-Hold Property for Fully Incomplete Markets when Super-replicating Markovian Claims," Papers 1707.01178, arXiv.org, revised Oct 2018.
    15. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
    16. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    17. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.
    18. Yan Dolinsky & Or Zuk, 2023. "Exponential Utility Maximization in a Discrete Time Gaussian Framework," Papers 2305.18136, arXiv.org, revised Jun 2023.
    19. Beatrice Acciaio & Mathias Beiglböck & Gudmund Pammer, 2021. "Weak transport for non‐convex costs and model‐independence in a fixed‐income market," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1423-1453, October.
    20. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.17270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.